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ABSTRACT 

This study presents a GIS-based landslide hazard zonation model that integrates remote sensing data 
with key physical parameters inf luencing landslide occurrence in Padang Panjang City, Indonesia. The 

methodology involves spatial analysis to assess critical environmental factors, including slope, soil type, 
rainfall, and land use changes. The dataset comprises DEMNAS for topographic information, CHIRPS rainfall 
data f rom two periods (2002–2012 and 2013–2022), and Landsat 7 ETM+ and Landsat 8 OLI imagery f rom 

2012 to 2022. The analysis begins with a spatial classif ication of  land use changes to identify trends in land 
cover transformation. Landslide hazard zonation is determined using a multi -criteria weighting method that 
integrates various physical factors. The model's accuracy is evaluated using the area under the curve (AUC) 

metric, incorporating historical landslide occurrence data. The results indicate an expansion of  cultivated land 
for community activities. Additionally, within the landslide hazard zones, both low hazard and high hazard 
categories have shown an increase in area. The accuracy assessment of  the landslide hazard zonation model, 

based on AUC calculations, achieved 95% for the 2012 event data and approximately 92% for the 2022 event 
data. The analysis delineates three distinct landslide hazard zones, emphasizing the necessity for proactive 
disaster risk management policies and increased public awareness, particularly in high potential areas. GIS -

based landslide hazard zonation serves as a valuable tool for enhancing risk management and spatial planning  

in upland urban areas, ultimately contributing to the development of  safer and more resilient communities.  

Kata kunci: landslide hazard model, GIS, remote sensing, physical factors   

ABSTRAK  

Penelitian ini membahas model zonasi bahaya longsor berbasis SIG, yang mengintegrasikan data 
penginderaan jauh serta parameter fisik utama yang mempengaruhi terjadinya longsor di Kota Padang 

Panjang, Indonesia. Metode yang digunakan dalam penelitian ini melibatkan analisis spasial untuk 
mengevaluasi faktor lingkungan utama, yaitu kemiringan, jenis tanah, curah hujan, dan perubahan 
penggunaan lahan. Data yang digunakan mencakup DEMNAS untuk topografi, data curah hujan CHIRPS 

dalam dua periode (2002-2012 dan 2013-2022), serta citra Landsat Landsat 7 ETM and 8 OLI untuk tahun 
2012-2022. Proses analisis diawali dengan kajian perubahan penggunaan lahan yang diklasifikasikan secara 
spasial untuk mengidentifikasi tren perubahan tutupan lahan. Zonasi bahaya longsor ditentukan dengan 

metode pembobotan multi-kriteria yang menggabungkan berbagai faktor fisik. Akurasi model diuji  
menggunakan area under curve (AUC) dengan historis data kejadian longsor. Hasil penelitian menunjukkan 
bahwa terjadi peningkatan lahan budidaya yang dimanfaatkan untuk aktivitas masyarakat. Sebaliknya, pada 

zona bahaya longsor, kategori zona bahaya rendah dan tinggi mengalami peningkatan luasan. Selain itu, 
penilaian akurasi model zonasi bahaya longsor, yang menggunakan perhitungan area under curve (AUC) 
untuk data kejadian tahun 2012, mencapai 95%, sedangkan untuk data kejadian tahun 2022, akurasi tersebut  

berkisar 92%. Berdasarkan hasil analisis, diperoleh tiga zona bahaya longsor yang berbeda. Perlunya 
kebijakan manajemen risiko bencana yang proaktif serta peningkatan kesadaran masyarakat terhadap bahaya 
longsor, terutama di zona dengan potensi tinggi. Zonasi bahaya longsor berbasis GIS memberikan informasi 

yang penting untuk meningkatkan manajemen risiko dan perencanaan di kawasan perkotaan dataran tinggi,  

serta berkontribusi pada terciptanya komunitas yang lebih aman dan tangguh.  

Keywords: model bahaya longsor, GIS, penginderaan jauh, faktor fisik   
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INTRODUCTION  

Landslides are ranked as the third most 

signif icant natural disaster globally regarding their 
potential to cause catastrophic impacts (Huang et 
al., 2023). Similar to many other developing 

countries, Indonesia f requently experiences various 
natural hazards, including landslides. Besides the 
extensive Indus alluvial plain, which renders much 

of  the population vulnerable to major f loods, 
Indonesia is characterized by geomorphologically 
active mountainous terrain (Kanwal et al., 2017).  

Landslides are particularly common in mountainous 
areas and are highly destructive to both the 
environment and human settlements (Gupta et al., 

2022). The occurrence and f requency of  landslides 
in a region depend on the interplay between 
triggering factors and natural conditions. Several 

phenomena inf luence slope stability and contribute 
to landslides, including rainfall, temperature 
f luctuations, seismic activity, volcanic eruptions, 

and various human activities (Małka, 2022).  
Comprehensive regional landslide occurrence data, 
along with an understanding of  the relationship 

between landslide distribution and inf luencing 
factors, are essential for evaluating regional 
landslide hazard potential and elucidating the role of  

landslides in landscape evolution (Af fandi et al., 
2023). Landslide attribution data, which include 
details about the location, number of  events, and 

spatial distribution of  landslides, are critical for 
ensuring objectivity and accuracy in subsequent 
research (Regmi & Agrawal, 2022). 

Over the past decades, numerous researchers  
have employed various methods for landslide 
hazard mapping (LSM) using GIS technology, 

utilizing both qualitative and quantitative 
approaches (El Jazouli, Barakat, & Khellouk, 2019;  
Devara et al., 2021). Landslide hazard maps are 

vital tools for land management, land-use planning, 
and reducing landslide-associated costs (Suprapto 
et al., 2022). Additionally, landslide hazard  

assessments serve as critical components of  early 
warning system engineering and are foundational 
for comprehensive landslide hazard and risk 

assessments (Sharma & Mahajan, 2018). The 
literature provides extensive evidence of  GIS being 
applied to mass debris research (Tewari & Misra, 

2019). Various techniques are utilized to study 
landslide susceptibility, including empirical, 
statistical, and deterministic approaches, 

particularly in large-scale engineering geology 
projects (Mardiah et al., 2017; Saha et al., 2022). 

The high hazard of  landslides is not solely 

attributable to natural factors but is of ten 
exacerbated by anthropogenic activities such as 
rapid urbanization and unregulated land-use 

changes (Kohno et al., 2022). Urbanization has 
resulted in the encroachment of  steep slopes 
previously serving as water catchment areas,  

thereby increasing the risk of  erosion and landslides 
(Fang et al., 2023). Furthermore, deforestation in 
areas surrounding agricultural and built-up regions 

has stripped away vegetation layers that act as 
natural soil stabilizers, rendering slopes more 
susceptible to land movement. Without appropriate 

science-based interventions, this risk will continue 
to escalate, threatening the safety and livelihoods of  
local communities (Mardiah, 2021). Geographic 

Information Systems (GIS) provide an ef fective 
solution to these challenges. GIS facilitates the 
integration of  multiple spatial data sources to 

develop more accurate and detailed hazard zoning 
models. Addressing spatial problems often involves 
consideration of  numerous criteria and is 

signif icantly inf luenced by the value judgments and 
uncertainties of  investigators (Ullah et al., 2022). To 
mitigate decision-making imprecision and 

uncertainty, this study employs a multi-criteria 
decision-making approach that allows for the 
consistent representation of  subjective perceptions 

and numerical analyses to mathematically formulate 
knowledge (Thanh et al., 2022). Landslide risk is 
inf luenced not only by physical and environmental 

factors but also by socio-economic conditions that 
determine a community's vulnerability and 
resilience (Pal & Karnjana, 2021). The researchers  

recognize that factors such as population mobility, 
population growth, livelihoods, and local community 
understanding were not included in determining 

vulnerability zones (Perera et al., 2020). These 
socio-economic aspects play a crucial role in 
disaster risk assessment, as they directly inf luence 

community resilience and adaptive capacity in 
landslide-prone areas (Xu et al., 2018). 

Padang Panjang City, located in the highlands 

of  West Sumatra, is highly susceptible to landslides 
due to its steep topography and high annual rainfall 
(Z. Umar, Pradhan, Ahmad, Jebur, & Tehrany,  

2014). As a densely populated urban area situated 
within a volcanic mountainous landscape, Padang 
Panjang has experienced multiple landslide events 

in recent years, resulting in signif icant disruptions to 
inf rastructure, agricultural productivity, and local 
livelihoods (Faris & Fawu, 2014). Historical records 

indicate that landslides f requently occur along major 
transportation routes, cutting of f  access between 
districts and causing economic losses (Purnawan & 

Khairah, 2021). Furthermore, the combination of  
rapid urbanization and land-use changes such as 
deforestation and slope modifications for settlement 

expansion has exacerbated the risk of  slope failures 
(Johnston et al., 2021). The lack of  comprehensive 
spatial assessments has led to inadequate 

mitigation measures, leaving many communities 
vulnerable to landslide hazards (Triyatno et al., 
2020). Given these conditions, Padang Panjang is 

an important case study for developing a GIS-based 
landslide hazard zoning model, which can help 
inform sustainable urban planning and disaster 

preparedness ef forts. 
The primary objective of  this research is to 

apply a spatial approach, leveraging GIS 

technology, to produce a landslide hazard map for 
the highlands of  Padang Panjang City, West 
Sumatra. To achieve this objective, the study 
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examines key aspects such as land-use changes 
f rom 2012 to 2022 and a detailed landslide hazard 
assessment within the Padang Panjang City area,  

located in the highlands of  Sumatra Island. The 
landslide hazard zonation model developed in this 
study has signif icant implications. Beyond providing 

a scientif ic basis for spatial planning, it serves as a 
decision-support tool for disaster risk mitigation, 
thereby enhancing preparedness for natural 

disasters.  

METHOD 

Study Area 

Our case study focuses on one of  the cities in 
the West Sumatra region, located in the highlands 
of  West Sumatra (Figure 1). Padang Panjang City 

is characterized by mountainous topography and 
high rainfall, making it particularly susceptible to 
natural disasters, especially landslides. Various 

human activities, particularly in the land 
development sector, play a signif icant role in 
meeting daily needs. With an elevation of  

approximately 539 meters above sea level, the area 
supports thriving horticultural crops and a robust 
agricultural sector. However, the population size is 

relatively small compared to typical urbanized  
areas. Despite being administratively categorized 
as a city, the population, according to the 2022 

census, was recorded at 57,850 people (BPS, 

2021). 

 
Figure 1.  Research location. 

Datasets 

Measuring landslide movement hazards is 

crucial for managing hydrometeorology-related 
disasters and assessing damage risks. Landslide 
hazards, particularly in upland areas, have 

signif icant impacts on urban regions, including 
inf rastructure damage, socio-economic disruption, 
threats to public safety, and extensive 

environmental degradation. A landslide hazard  
analysis was conducted for the upland areas within 
the administrative boundaries of  Padang Panjang 

City, Indonesia. This analysis employed four main 
criteria, encompassing various physical 
characteristics of  landslide-prone environments. 

The datasets used include the Digital Elevation 
Model Nasional (DEMNAS) obtained f rom the 
Geospatial Information Agency 

(tanahair.indonesia.go.id), soil type data f rom the 
Indonesian Center for Agricultural Land Resources 
Research and Development 

(sdlp.bsip.pertanian.go.id), and rainfall data 
categorized into two periods (2002–2012 and 2013–
2022) sourced f rom the Climate Hazards Group 

Inf raRed Precipitation with Station data (CHIRPS) 
website (www.chc.ucsb.edu). Additionally, Landsat 
7 ETM and 8 OLI imagery was retrieved f rom the 

United States Geological Survey (USGS) Earth 
Explorer platform (earthexplorer.usgs.gov), while 
event data were recorded by regional disaster 

management agencies. 
Given the varying resolutions and scales of  

these datasets, the f inal landslide hazard zonation 

map was standardized to a spatial resolution of  30 
meters, ensuring consistency across all raster-
based analyses. The soil type data, initially 

available as a vector dataset at a scale of  1:50,000, 
were converted into a raster format within the GIS 
environment to align with other spatial datasets. To 

maintain consistency, a resampling process was 
applied, interpolating the vector data into a 30-meter 
raster grid. This transformation enabled seamless 

integration with other raster-based datasets, such 
as slope, rainfall, and land use. The resampling 
method was carefully selected to preserve the 

spatial integrity of  the original dataset while 
minimizing potential distortions, ensuring accuracy 
in the landslide hazard modeling process. 

Similarly, rainfall data, originally available as a 
raster dataset with a spatial resolution of  1 km, were 
processed to match the 30-meter resolution used in 

the f inal analysis. This adjustment was necessary to 
maintain consistency across all spatial datasets and 
facilitate accurate integration within the GIS-based 

landslide hazard zonation model. The resampling 
process was performed using bilinear interpolation, 
a technique that smooths transitions between 

adjacent pixel values while preserving the spatial 
gradient of  precipitation distribution. This method 
was chosen to ensure precipitation variability across 

the study area was accurately represented, 
minimizing distortions in the downscaled data. By 
standardizing the resolution of  all datasets to 30 

meters, this study ensures that all contributing 
factors including topography, soil type, land use, 
and rainfall are analyzed at the same spatial scale, 

thereby enhancing the reliability and accuracy of  the 
f inal landslide hazard zonation map. The detailed 
criteria and data sources utilized in the analysis are 

summarized in Table 1. 
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Table 1. Catalog of datasets applied in the research. 

Datasets Type Resolution/ Scale Sources 
Incident Vector 1:1.000 Regional Disaster Management Agency 

Slope Raster 8 meters Geospatial Information Agency 
Soil type Vector 1:50.000 Indonesian Center for Agricultural Land Resources Research and 

Development 

Rainfall Raster 1km Climate Hazards Group InfraRed Precipitation with Station data 
Land use 2012 
and 2022 

Raster 30 meters United States Geological Survey 

 

In GIS-based spatial analysis, the choice of  
map scale plays a crucial role in determining 
accuracy and precision. Map-based studies should 

explicitly declare and discuss the scale used, as not 
all map scales allow for accurate area calculations. 
The selected map scale also af fects the precision 

and reliability of  spatial analysis, especially when 
integrating multiple datasets.  

The overlay and combination of  different maps 

must consider variations in boundary delineation 
methods. Climatic maps of ten rely on interpolation 
techniques, soil maps are typically interpretative 

based on landform characteristics, while slope 
maps are generated using pixel-based calculations. 
Since these datasets employ dif ferent boundary 

delineation approaches, their direct integration in 
GIS analysis may introduce inconsistencies. 
Furthermore, considering the accuracy assessment 

results based on the Area Under the Curve (AUC) 
method, it is possible that the obtained accuracy 

levels may be coincidental rather than fully 

representative of  actual hazard conditions. 

Analysis 

The distribution of  landslide’s potential hazard 
is the result of  a combination of  soil movement 

activities and the unstable hydrological cycle (Afzal 
et al., 2022). Generally, the disaster occurs bond to 
the topographical category that is steep to a very 

deep, and can also be rather steep with open 
surface cover without a barrier on the surface 
(Vojteková & Vojtek, 2020). In this study, statistical 

analysis of  the physical characteristics of  the 
potential for landslides was supported by a review 
of  relevant literature and adapted to the conditions 

of  the Padang Panjang City area, West Sumatra.  
The parameter information used in the study is as 
follows (Table 2): 

 
Table 2. Parameters used in research. 

No Parameters Sub-parameters Score Weight 

1 Slope 0-8% 0.02  
  8-15% 0.07  
  15-25% 0.15 40% 
  25-40% 0.32  
    >40% 0.45  

2 Type of Soil Mediterranean 0.30 20% 
    Cambisol 0.20  

3 Rainfall 0-100mm 0.40  
 (mm/month) 100-200mm 0.30 10% 
    >200mm 0.20  

4 Land Use Forest 0.01  
  Paddy Field 0.06  
  Settlement 0.09 30% 
  Mixed Plantation 0.21  

  Dryland farming 0.38  

Source: (Amaluddin et al., 2020) 

Findings f rom landslide hazard zones with sub-

parameter factors studied will produce relatively 
appropriate results in providing disaster spatial 
information. Where the slope > 25% is prone to 

landslides, and the mediterranean soil type has soil 
characteristics that have an inf luence on the 
occurrence of  landslides in a land (Zhao et al., 

2022). Dif ferences in land use types have dif ferent 
impacts on landslides. While climatological factors 
help accelerate the occurrence of  landslides by 

carrying out soil erosion on the characteristics of  
open land cover and land with weak tree roots. This 
will suggest in planning a land use that is safe and 

reducing the risk f rom various human activities on 
the land (Li et al., 2022). 

Assessment of Accuracy 

The accuracy assessment stage is an essential 
component of  spatial data analysis. This research 

employs two primary methods for accuracy 
evaluation: the confusion matrix and the Area Under 
the Curve (AUC) approach. The AUC method, 

introduced by Swets (1988), is widely utilized for 
assessing accuracy in spatial modeling (Swets, 
1988). Land use data requires an evaluation of  

classif ication accuracy to ensure its applicability for 
subsequent analysis, particularly in landslide 
hazard model assessments. 

The process begins with the collection of  
geographical coordinates for land use across 
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various years, using a total of  400 samples derived 
f rom high-resolution imagery. The accuracy of  the 
landslide hazard model is then evaluated using the 

Receiver Operating Characteristics (ROC) curve. 
Historical landslide event data was sourced f rom the 
archives of  the regional disaster management 

agency, with 37 events recorded up to 2012 and 45 
events recorded f rom 2013 to 2022. Geographical 
coordinates were collected through f ield surveys 

and supplemented with imagery f rom Google Earth. 
To enhance the analysis, external tools were 
incorporated into Python-based machine learning 

algorithms to generate the AUC values. Finally, the 
classif ication results of  the landslide hazard model 
are calculated in this section, with the AUC graph 

serving as the output to represent the accuracy 

assessment. 

RESULTS 

Land use change in 2012-2022 

Land use change ref lects the dynamics of  land 
utilization inf luenced by various factors, including 

population growth, urbanization, and shif ts in 
agricultural practices. In the context of  geography 
and sustainability, analyzing land use change is 

essential for understanding the environmental,  
social, and economic impacts of  land conversion 
processes, as well as the implications of  

hydrometeorological natural disasters (Giofandi et 
al., 2024). 

In 2012, the region was predominantly 

characterized by forest land and agricultural land, 
including dryland farming and mixed agriculture. 
Built-up areas were relatively limited, indicating that 

the majority of  the land was utilized for agricultural 
activities and the preservation of  forest ecosystems. 
This diverse land use pattern ref lects traditional 

practices that support local sustainability and food 
security while highlighting potential conf licts 
between development needs and environmental 

conservation (Ambarwulan et al., 2023). However,  
by 2022, a signif icant transformation in land use 
distribution had occurred. The region experienced 

rapid urbanization, as evidenced by a notable 
increase in built-up areas (marked in red), 
particularly in the city center and surrounding 

regions (Figure 2). This transition not only signif ies 
economic growth and inf rastructure development 
but also introduces new challenges related to 

environmental sustainability, such as habitat loss, 
soil degradation, and increased pressure on water 
resources 

The phenomenon of  increasing land use is 
evident in the drastic reduction of  forest areas 
during this period. In 2012, forests covered 535.58 

hectares, but much of  this land was converted into 
built-up areas and other agricultural land by 2022 
(Table 3). Additionally, mixed agricultural land 

experienced a decline, while paddy f ields showed 
signif icant expansion. This reduction in forest and 
mixed agricultural land highlights increasing 

pressure on land resources, which can have 
adverse ef fects on biodiversity and disrupt the 
balance of  local ecosystems. The growth of  paddy 

f ields, attributed to the conversion of  dryland and 
mixed-use areas, illustrates agricultural 
intensif ication but also underscores the trade-offs 

between land conservation and agricultural 
development. Built-up areas expanded rapidly, 
covering an additional 422 management to strike a 

balance between urban development and 
environmental preservation. These f indings 
underscore the importance of  sustainable land use 

planning to 

 
Figure 2.  Land use of the research area in (a) 2022, 

and (b) 2012. 

Table 3. Land use changes in the Padang Panjang City for the period 2012-2022. 

Category 
2012 2022 Change 

Area (ha) (%) Area (ha) (%) Area (ha) (%) 

Forest 725 35.04 588 28.42 -137 -6.62 
Mixed garden 16 0.77 55 2.66 39 1.88 
Dry land farming 98 4.74 8 0.39 -90 -4.35 
Paddy field 808 39.05 785 37.94 -23 -1.11 
Built-up 422 20.40 633 30.59 211 10.20 
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.
Table 4. User accuracy (UA) and producer accuracy (PA) of LULC category for 2012-2022. 

Category 
2012 2022 

UA (%) PA (%) UA (%) PA (%) 
Forest 95.65 91.67 92.68 97.44 
Mixed garden 86.47 88.36 80.00 82.28 
Dry land farming 85.71 85.71 88.24 89.36 
Paddy field 89.47 96.23 97.92 90.38 
Built-up 92.31 85.71 92.86 95.12 

Overall Accuracy 92.03 - 94.16 - 
Kappa Coefficient 93.07 - 96.24 - 

 

minimize environmental degradation while meeting 
the needs of  the population. 

The accuracy assessment stage plays a crucial 

role in evaluating land use mapping, as it provides 
insight into how well the classif ications derived from 
remote sensing imagery align with actual ground 

conditions. For land use analysis in 2012 and 2022, 
the User Accuracy (UA) and Producer Accuracy 
(PA) metrics measure the reliability of  the 

classif ications and their ef fectiveness in identifying 
specif ic land use types (Table 4). These accuracy 
evaluations were based on 400 samples taken f rom 

high-resolution imagery (Google Earth), of fering a 
robust foundation for analysis 

For forest areas, the high UA (95.65%) and PA 

(91.67%) in 2012 indicate strong classif ication 
accuracy, meaning most areas identif ied as forests 
were indeed forests in reality. However, by 2022,  

while the PA improved to 97.44%, the UA slightly 
declined to 92.68%, suggesting some 
misclassif ication between forests and other 

vegetated areas due to land cover transitions. This  
shif t is consistent with the decreasing forest cover 
observed in the study, where small forest patches 

may have been misidentif ied as mixed agriculture or 
degraded land due to spectral similarities in satellite 
imagery. 

The classif ication of  mixed agricultural land 
posed a greater challenge, as indicated by lower UA 
(86.47%) and PA (88.36%) in 2012, which further 

declined in 2022 (UA: 80.00%, PA: 82.28%). This  
reduction highlights increasing classif ication 
ambiguity, likely due to overlapping spectral 

characteristics between dif ferent agricultural types 
(e.g., mixed cropping and dryland farming). The 
f ragmentation of  agricultural landscapes and 

seasonal land use variability may have contributed 
to classif ication inconsistencies, requiring more 
ref ined spectral dif ferentiation techniques in future 

studies. 
The paddy f ield classif ication exhibited 

consistent improvements, with UA increasing f rom 

89.47% in 2012 to 97.92% in 2022, while PA slightly 
decreased f rom 96.23% to 90.38%. This indicates 
that the classif ication process became more 

ef fective in correctly identifying paddy f ields, but 
some areas may have been misclassif ied as 
wetlands or agricultural f ields due to seasonal water 

f luctuations. Given that paddy f ields expanded 
signif icantly during the study period, maintaining  
classif ication accuracy is essential for analyzing  

agricultural land use impacts on hydrological 
dynamics. 

Built-up areas demonstrated reliable 

classif ication accuracy, with UA of  92.31% and PA 
of  85.71% in 2012, improving to UA of  92.86% and 
PA of  95.12% in 2022. The increase in PA suggests 

better identif ication of  urbanized regions, while 
consistent UA values conf irm that most built-up 
areas were accurately detected. However, slight 

misclassif ications may have occurred between 
urban and industrial land uses, requiring further 
ref inement in classif ication algorithms to distinguish 

between dif ferent types of  built environments. 
The overall classif ication accuracy improved 

f rom 92.03% in 2012 to 94.16% in 2022, with the 

Kappa coef f icient increasing f rom 93.07 to 96.24, 
indicating a high level of  agreement between 
classif ied land use types and reference data. These 

improvements ref lect advancements in data 
processing techniques, the use of  high-resolution 
reference samples, and ref ined classif ication 

methods, making the land use dataset a reliable 

basis for landslide hazard assessment. 

Landslide Hazard Model 

The parameters used in this assessment 

include slope, soil type, monthly rainfall, and land 
use (Figure 3). A thorough understanding of  these 
parameters facilitates decision-making related to 

risk mitigation, spatial planning, and environmental 
preservation (Mersha & Meten, 2020). Data 
collected over dif ferent periods, such as rainfall data 

f rom 2002–2012 and 2013–2022, as well as land 
use data f rom 2012 and 2022, provide a 
comprehensive overview of  the changes occurring 

in the study area. 
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Figure 3.  The parameters used in the study include (a) slope; (b) soil type; (c) rainfall in 2012; (d) rainfall in 2022, (e) 

land use in 2012, and (f) land use in 2022. 
 

In landslide studies, hazard refers to the 
probability of  landslide occurrence based on 

physical factors such as slope, soil type, and 
rainfall. However, landslide hazard potential is 
inf luenced by the interaction of  these physical 

factors with environmental changes, particularly 
land use modif ications. The slope parameter 
reveals that most of  the area falls within the 0–8° 

slope category, which accounts for 54.57% of  the 
total area (Table 5). This indicates that relatively f lat 
slopes have a lower potential for landslide hazards. 

Conversely, the 8–15° and 15–25° slope categories 
account for 15.66% and 15.47%, respectively, 
suggesting a moderate hazard of  landslides in these 

steeper areas. However, the more extreme slope 
categories, such as 25–40° and above 40°, 
represent smaller proportions of  12.71% and 

1.59%, respectively. This f inding indicates that 
although there are high-hazard areas, most of  the 
region does not have suf f icient slope steepness to 

signif icantly increase landslide hazard potential.  

The analysis of  soil types is also critical in 
landslide hazard assessments. According to the 

data, Cambisols dominate, covering 67.86% of  the 
area, while Mediterranean soils account for 32.14%. 
Cambisols, known for their favorable physical and 

chemical properties for agriculture, may contribute 
to landslide hazard potential if  not managed 
appropriately, particularly on steep slopes. Thus,  

understanding these soil types is essential for 
planning ef fective mitigation measures. 

Monthly rainfall data indicate signif icant 

dif ferences between the 2002–2012 and 2013–
2022 periods. During the 2002–2012 period, rainfall 
in the 200–300 mm range accounted for 42.19%, 

highlighting a high f requency of  rainfall capable of  
triggering landslides. In contrast, during the 2013–
2022 period, the 100–200 mm range dominated, 

comprising 71.77%, indicating a shif t in rainfall 
patterns. The decrease in extreme rainfall events 
(0–100 mm) during the latter period suggests a 

potential reduction in landslide hazard potential.  
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Table 5. Area and percentage of parameters in research. 

No Parameters Categories Area (ha) Percentage (%) 
1 Slope 0-8 1,129 54.57 

 (%) 8-15 324 15.66 
  15-25 320 15.47 
  25-40 263 12.71 
    >40 33 1.59 

2 Type of Soil Mediterranean 665 32.14 
   Cambisol 1,404 67.86 

3 Rainfall 0-100mm 374 18.08 
 (mm/month) 100-200mm 1,485 71.77 
   in 2002-2012 200-300mm 210 10.15 

4 Rainfall 0-100mm 374 18.08 
 (mm/month) 100-200mm 1,485 71.77 
   in 2013-2022 200-300mm 210 10.15 

5 Land Use Forest 657 31.75 
 in 2012 Mixed Plantation 60 2.90 
  Dryland Farming 433 20.93 
  Paddy Fields 8 0.39 
  Settlement 905 43.74 
    Water Body 6 0.29 

6 Land Use Forest 657 31.75 
 in 2022 Mixed Plantation 60 2.90 
  Dryland Farming 433 20.93 
  Paddy Fields 8 0.39 
  Settlement 905 43.74 
    Water Body 6 0.29 

 

In the context of  landslide studies, risk is a 
function of  hazard, vulnerability, and capacity. 
Hazard refers to the probability of  landslide 

occurrence based on physical factors such as 
slope, rainfall, and soil type. Vulnerability, on the 
other hand, describes the susceptibility of  elements 

at risk (e.g., populations, inf rastructure, and 
ecosystems) to the impacts of  a landslide (He et al., 
2024). Capacity represents the ability to mitigate or 

adapt to these hazards through structural and non-
structural measures (Broquet et al., 2024). When a 
region experiences increased hazard potential such 

as high rainfall variability without adequate 
mitigation measures to reduce vulnerability, the 
overall landslide risk increases (Ceccato et al., 

2024). Therefore, although f luctuations in rainfall 
patterns may not directly translate to an immediate 
increase in hazard, they can inf luence the f requency 

and intensity of  landslides over time, particularly in 
areas with high vulnerability and low adaptive 
capacity. However, signif icant f luctuations in rainfall 

still pose a hazard, emphasizing the importance of  
continuous monitoring. Land use changes between 
2012 and 2022 have likely inf luenced landslide 

hazards. In 2012, forests covered 35.04% of  the 
area, but by 2022, this had decreased to 28.42%. 

Conversely, settlement areas increased 
signif icantly f rom 20.40% to 30.59% over the same 
period. The reduction in forest area heightens 

landslide hazard potential due to the loss of  
vegetation that stabilizes soil. Additionally, the 
decline in dry agricultural land and the increase in 

mixed land use ref lect a shif t in land use patterns 
that may af fect soil stability. 

Based on the analysis of  parameters  

inf luencing landslide hazards, it is evident that the 
combination of  slope, soil type, rainfall, and land use 
changes signif icantly contributes to the potential for 

landslides in the area. The reduction in forest cover 
and the expansion of  settlement areas are 
particularly concerning in terms of  landslide hazard  

mitigation. Furthermore, changes in rainfall patterns 
over time underscore the importance of  data-driven 
mitigation planning. A comprehensive 

understanding of  these environmental changes is 
crucial for identifying areas at high hazard of  
landslides (Dai et al., 2022). Considering these 

parameters, the next step is to conduct landslide 
hazard zonation, which will classify and map areas 
with varying degrees of  landslide hazard across the 

study area. 
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Figure 4.  Landslide hazard zone in Padang Panjang City in (a) 2012, and (b) 2022  
 
Table 6. Area and percentage of parameters in research. 

Category 
Area (ha) Percentage (%) 

2012 2022 2012 2022 
High 281 301 13.58 14.55 
Medium 406 341 19.62 16.48 
Low 1,382 1,427 66.80 68.97 

 
 

Landslide hazard zonation, based on 

parameters such as slope, soil type, rainfall, and 
land use, provides a systematic perspective on 
areas vulnerable to disasters. Data f rom 2012 and 

2022 illustrate changes in landslide hazard  
zonation, ref lecting environmental dynamics that 
may af fect regional stability (Figure 4). The 

landslide hazard zonation mapping was conducted 
by integrating multiple spatial parameters, including 
slope, soil type, rainfall, and land use. Given the 

scale and resolution of  the available data, a 
generalization process was applied to ensure 
consistency and accuracy in the delineation of  

hazard zones. This process involved smoothing and 

aggregating smaller hazard patches that may have 

resulted f rom high resolution spatial variations, 
preventing over f ragmentation in hazard 
classif ication (Reichenbach et al., 2018).  

Additionally, the mapping scale inf luenced the 
level of  detail in hazard classif ication, where f iner-
resolution data would potentially yield more 

f ragmented zonation (Shano et al., 2020). However,  
the adopted methodology ensures that the f inal 
hazard zonation represents a balanced 

interpretation between detail and practical usability, 
minimizing excessive complexity while maintaining  
spatial accuracy. 
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In 2012, areas classif ied as having a high 
landslide hazard accounted for 13.58% of  the total 
area (Table 6). Although the overall change in 

landslide hazard zonation appears to be less than 
5%, this variation still holds signif icance f rom a 
hazard management perspective. Even minor 

increases in high hazard zones may indicate 
localized environmental degradation, particularly in 
areas undergoing deforestation and urban 

expansion (Depicker et al., 2021). Additionally, 
small changes in hazard classif ication can have 
substantial implications for communities, 

inf rastructure planning, and early warning systems. 
Therefore, while the numerical percentage change 
is relatively low, its spatial distribution and 

underlying causes warrant further attention in 
landslide hazard mitigation strategies. 

These zones typically include regions with 

steep slopes, erosion-prone soil types, and high 
rainfall. The medium hazard zone covered 19.62%, 
while the low hazard zone dominated at 66.80%. In 

landslide studies, hazard and risk are distinct yet 
interconnected concepts. Landslide hazard refers to 
the probability of  a landslide occurring in a specific 

area, based on physical and environmental factors 
such as slope, soil type, and rainfall. However, risk 
is a function of  both hazard and vulnerability, where 

vulnerability encompasses exposure and the 
inability of  af fected elements (e.g., inf rastructure, 
population, and ecosystems) to cope with or recover 

f rom landslide impacts (Shah et al., 2023). Thus,  
even in areas classif ied as low hazard zones, risk 
can still be signif icant if  the vulnerability is high, such 

as in densely populated settlements or regions with 
inadequate mitigation measures. The large 
proportion of  low hazard zones suggests that a 

substantial portion of  the area experiences relatively 
low landslide hazard potential.  

In 2022, the high landslide hazard zone 

expanded to 14.55%, ref lecting an increase in high 
hazard areas. This growth is attributed to land use 
changes, such as reduced forest cover and 

increased settlement areas, which exacerbate the 
potential hazard of  landslides. The medium hazard 
zone decreased to 16.48%, while the low hazard  

zone rose to 68.97%. The increase in low-hazard  
zones suggests that mitigation measures, such as 
vegetation restoration or erosion control, may have 

been implemented to reduce landslide potential. 

 
(a) 

 
(b) 

Figure 5.  Area under curve landslide hazard zone in 
(a) 2012, and (b) 2022. 

The accuracy of  landslide hazard zonation 

mapping is another important indicator of  the 
reliability of  zoning results. In 2012, the mapping 
accuracy reached 95%, indicating that most of  the 

hazard classif ications aligned with actual f ield 
conditions (Figure 5). This accuracy slightly 
decreased to 92% in 2022, remaining within the 

excellent category. The decline may be attributed to 
increasingly dynamic changes in rainfall patterns 
and land use, which could af fect zonation 

classif ication results. The integration of  landslide 
hazard parameter analysis—including slope, soil 
type, rainfall, and land use changes—with landslide 

hazard zonation of fers a comprehensive view of  
landslide hazard potential within the area. The slight 
increase in high hazard zones by 2022 underscores 

the urgency for more intensive mitigation ef forts. 

DISCUSSION 

Landslide hazard zoning is a highly important 
tool for planning and disaster mitigation in landslide-

prone regions. By using a GIS approach, landslide 
hazard mapping enables the identif ication of  areas 
most vulnerable to landslide threats (Aydin et al., 

2022). The use of  GIS also of fers advantages in 
accurate and ef f icient spatial visualization, which 
greatly assists stakeholders in making data-driven 

decisions (Liu et al., 2022). This model can integrate 
various environmental parameters such as slope 
gradient, soil type, land use, and rainfall to produce 

comprehensive zoning maps. Its application allows 
for the integration of  data f rom multiple sources, 
making it a highly ef fective tool for developing 

prevention and mitigation strategies (Nohani et al., 
2019). 

Landslide hazard zoning specif ically focuses 

on identifying areas susceptible to landslides based 
on physical and environmental factors, without 
directly accounting for social vulnerability or coping 

capacity (Pourghasemi et al., 2018). Understanding 
this distinction is crucial for ef fective disaster 
reduction strategies, as risk assessment requires an 

integrated approach that includes vulnerability 
analysis and capacity building (Nanehkaran et al., 
2023). 

The results of  landslide hazard zoning have 
signif icant implications for urban spatial planning. 
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Padang Panjang City, as a highland area, faces 
major challenges in disaster management. This  
zoning maps high hazard, medium hazard, and low 

hazard areas, providing critical input for local 
governments in regulating development. For 
example, high hazard areas should ideally be 

designated as conservation zones or allocated for 
low hazard uses, such as protected forests or green 
zones. Meanwhile, low hazard areas are more 

suitable for inf rastructure development and 
residential expansion. In other words, this zoning 
helps align spatial plans with natural realities and 

potential disaster, enabling sustainable 
development. 

Landslide hazard mapping also plays a crucial 

role in enhancing disaster preparedness. By 
delineating hazard prone areas, this mapping allows 
decision makers to prioritize mitigation ef forts and 

allocate resources ef f iciently (Sun et al., 2022). High 
hazard zones can be targeted for early warning  
systems, slope stabilization projects, and 

community-based disaster risk reduction programs 
(Zeng et al., 2021). Additionally, hazard maps 
provide essential information for land use planning, 

ensuring that new developments do not encroach 
on unstable areas (Tjahjono et al., 2024). By 
integrating hazard zoning into policy f rameworks, 

local governments can strengthen resilience and 
minimize potential losses. 

Landslide hazard zoning models must also 

consider social and economic dimensions. Areas 
identif ied as high-risk zones require greater 
attention in the form of  mitigation policies, such as 

restrictions on development, relocation of  residents 
living in vulnerable areas, or stricter enforcement of  
environmental regulations (Firmansyah et al., 

2019). Additionally, educating communities living in 
high-risk areas is crucial to raising awareness of  
potential disasters and preventive measures 

(Ahyuni et al., 2022). This will reduce material and 
non-material losses that may arise f rom disasters. 
On the other hand, governments can also use this 

zoning to design sustainable economic 
development policies while prioritizing community 
safety and well-being (Umar et al., 2019). 

Furthermore, the GIS-based approach to 
landslide hazard modeling emphasizes the 
importance of  environmental dynamics in the zoning 

process (Xiong et al., 2017). Changes in land use, 
forest degradation, or increased rainfall due to 
climate change can af fect soil stability and increase 

landslide hazard potential. Therefore, it is essential 
to regularly update zoning data to ref lect the latest 
conditions. This zoning provides a scientif ic basis 

for more adaptive and hazard-based spatial 
policies, which are crucial in disaster-prone areas.  
Additionally, it plays a vital role in supporting 

environmental conservation by designating 
conservation areas in high-risk zones (Diva et al., 
2018). At the same time, it helps direct development 

to safer areas, ensuring a balance between 
development and environmental protection (Muzani 
et al., 2021). Through this approach, Padang 

Panjang City can manage landslide zoning more 
ef fectively and achieve sustainable, disaster-
resilient development. Thus, hazard is not static but 

evolves with environmental and anthropogenic 
changes (Berhane et al., 2021). While hazard  
zoning identif ies areas with potential instability, risk 

can escalate over time if  vulnerability factors such 
as population density, unplanned urbanization, and 
lack of  mitigation inf rastructure are not addressed 

(Zhang et al., 2021). 
Researchers acknowledge that this study has 

limitations in the application of  variables and other 

assessment elements. In terms of  information, the 
insights drawn f rom this study focus on assessing 
landslide-prone zones in relation to human 

activities. This disaster assessment factor is one of  
the key points in determining high hazard 
characteristics in Padang Panjang City.  This raises 

challenges in data resolution, socio-economic 
activities of  the community, and the need for spatial 
data standardization to produce renewable 

information. It is hoped that future research will 
consider aspects not included in this study and 
incorporate environmentally f riendly technological 

solutions to monitor ground movements in real time 

and with greater accuracy. 

CONCLUSION 

The conclusion of  this study emphasizes the 

importance of  applying a GIS-based landslide 
hazard zoning model in managing landslide 
potential in highland areas. This zoning serves as a 

hazard-based decision-making tool that helps 
minimize economic and social losses due to 
disasters. Furthermore, the study also highlights the 

need for disaster mitigation policies that are not only 
reactive but also proactive. Landslide hazard zoning 
should be considered in all spatial planning policies 

and inf rastructure development. Public awareness 
of  landslide zonation is also a crucial part of  the 
mitigation strategy, where educating the community 

on preventive actions is essential. Through the 
integration of  technology and data-driven policies, it 
is expected that landslide hazard potential can be 

managed more ef f iciently, creating a safer 
environment, and ensuring the welfare of  the 

community in the future. 
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