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ABSTRACT

This study presents a GIS-based landslide hazard zonation model that integrates remote sensing data
with key physical parameters influencing landslide occurrence in Padang Panjang City, Indonesia. The
methodology involves spatial analysis to assess critical environmental factors, including slope, soil type,
rainfall, and land use changes. The dataset comprises DEMNAS for topographic information, CHIRPS rainfall
data from two periods (2002-2012 and 2013-2022), and Landsat 7 ETM+ and Landsat 8 OLI imagery from
2012 to 2022. The analysis begins with a spatial classification of land use changes to identify trends in land
cover transformation. Landslide hazard zonation is determined using a multi-criteria weighting method that
integrates various physical factors. The model's accuracy is evaluated using the area under the curve (AUC)
metric, incorporating historical landslide occurrence data. The results indicate an expansion of cultivated land
for community activities. Additionally, within the landslide hazard zones, both low hazard and high hazard
categories have shown an increase in area. The accuracy assessment of the landslide hazard zonation model,
based on AUC calculations, achieved 95% forthe 2012 event data and approximately 92% for the 2022 event
data. The analysis delineates three distinct landslide hazard zones, emphasizing the necessity for proactive
disaster risk management policies and increased public awareness, particularly in high potential areas. GIS -
based landslide hazard zonation serves as a valuable tool forenhancing risk management and spatial planning
in upland urban areas, ultimately contributing to the development of safer and more resilient communities.

Kata kunci: landslide hazard model, GIS, remote sensing, physical factors
ABSTRAK

Penelitian ini membahas model zonasi bahaya longsor berbasis SIG, yang mengintegrasikan data
penginderaan jauh serta parameter fisik utama yang mempengaruhi terjadinya longsor di Kota Padang
Panjang, Indonesia. Metode yang digunakan dalam penelitian ini melibatkan analisis spasial untuk
mengevaluasi faktor lingkungan utama, yaitu kemiringan, jenis tanah, curah hujan, dan perubahan
penggunaan lahan. Data yang digunakan mencakup DEMNAS untuk topografi, data curah hujan CHIRPS
dalam dua periode (2002-2012 dan 2013-2022), serta citra Landsat Landsat 7 ETM and 8 OLI untuk tahun
2012-2022. Proses analisis diawali dengan kajian perubahan penggunaan lahan yang diklasifikasikan secara
spasial untuk mengidentifikasi tren perubahan tutupan lahan. Zonasi bahaya longsor ditentukan dengan
metode pembobotan multi-kriteria yang menggabungkan berbagai faktor fisik. Akurasi model diuji
menggunakan area under curve (AUC) dengan historis data kejadian longsor. Hasil penelitian menunjukkan
bahwa terjadi peningkatan lahan budidaya yang dimanfaatkan untuk aktivitas masyarakat. Sebaliknya, pada
zona bahaya longsor, kategori zona bahaya rendah dan tinggi mengalami peningkatan luasan. Selain itu,
penilaian akurasi model zonasi bahaya longsor, yang menggunakan perhitungan area under curve (AUC)
untuk data kejadian tahun 2012, mencapai 95%, sedangkan untuk data kejadian tahun 2022, akurasi tersebut
berkisar 92%. Berdasarkan hasil analisis, diperoleh tiga zona bahaya longsor yang berbeda. Perlunya
kebijakan manajemen risiko bencana yang proaktif serta peningkatan kesadaran masyarakat terhadap bahaya
longsor, terutama di zona dengan potensi tinggi. Zonasi bahaya longsor berbasis GIS memberikan informasi
yang penting untuk meningkatkan manajemen risiko dan perencanaan di kawasan perkotaan dataran tinggi,
serta berkontribusi pada terciptanya komunitas yang lebih aman dan tangguh.

Keywords: model bahaya longsor, GIS, penginderaan jauh, faktor fisik
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INTRODUCTION

Landslides are ranked as the third most
significant natural disaster globally regarding their
potential to cause catastrophic impacts (Huang et
al.,, 2023). Similar to many other developing
countries, Indonesia frequently experiences various
natural hazards, including landslides. Besides the
extensive Indus alluvial plain, which renders much
of the population vulnerable to major floods,
Indonesia is characterized by geomorphologicaly
active mountainous terrain (Kanwal et al., 2017).
Landslides are particularly common in mountainous
areas and are highly destructive to both the
environment and human settlements (Gupta et al.,
2022). The occurrence and frequency of landslides
in a region depend on the interplay between
triggering factors and natural conditions. Several
phenomena influence slope stability and contribute
to landslides, including rainfall, temperature
fluctuations, seismic activity, volcanic eruptions,
and various human activities (Matka, 2022).
Comprehensive regional landslide occurrence data,
along with an understanding of the relationship
between landslide distribution and influencing
factors, are essential for evaluating regional
landslide hazard potential and elucidating the role of
landslides in landscape evolution (Affandi et al.,
2023). Landslide attribution data, which include
details about the location, number of events, and
spatial distribution of landslides, are critical for
ensuring objectivity and accuracy in subsequent
research (Regmi & Agrawal, 2022).

Over the past decades, numerous researchers
have employed various methods for landslide
hazard mapping (LSM) using GIS technology,
utilizing  both qualitative and  quantitative
approaches (El Jazouli, Barakat, & Khellouk, 2019;
Devara et al., 2021). Landslide hazard maps are
vital tools for land management, land-use planning,
and reducing landslide-associated costs (Suprapto
et al, 2022). Additionally, landslide hazard
assessments serve as critical components of early
warning system engineering and are foundational
for comprehensive landslide hazard and risk
assessments (Sharma & Mahajan, 2018). The
literature provides extensive evidence of GIS being
applied to mass debris research (Tewari & Misra,
2019). Various techniques are utilized to study
landslide  susceptibility, including empirical,
statistical, and deterministic approaches,
particularly in large-scale engineering geology
projects (Mardiah et al., 2017; Saha et al., 2022).

The high hazard of landslides is not solely
attributable to natural factors but is often
exacerbated by anthropogenic activities such as
rapid urbanization and unregulated land-use
changes (Kohno et al., 2022). Urbanization has
resulted in the encroachment of steep slopes
previously serving as water catchment areas,
thereby increasing the risk of erosionand landslides
(Fang et al., 2023). Furthermore, deforestation in
areas surrounding agricultural and built-up regions
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has stripped away vegetation layers that act as
natural soil stabilizers, rendering slopes more
susceptible to land movement. Without appropriate
science-based interventions, this risk will continue
to escalate, threatening the safety and livelihoods of
local communities (Mardiah, 2021). Geographic
Information Systems (GIS) provide an effective
solution to these challenges. GIS facilitates the
integration of multiple spatial data sources to
develop more accurate and detailed hazard zoning
models. Addressing spatial problems often involves
consideration of numerous criteria and is
significantly influenced by the value judgments and
uncertainties of investigators (Ullah et al., 2022). To
mitigate  decision-making imprecision  and
uncertainty, this study employs a multi-criteria
decision-making approach that allows for the
consistent representation of subjective perceptions
and numerical analyses to mathematically formulate
knowledge (Thanh et al., 2022). Landslide risk is
influenced not only by physical and environmental
factors but also by socio-economic conditions that
determine  a community's vulnerability and
resilience (Pal & Karnjana, 2021). The researchers
recognize that factors such as population mobility,
population growth, livelihoods, and local community
understanding were not included in determining
vulnerability zones (Perera et al.,, 2020). These
socio-economic aspects play a crucial role in
disaster risk assessment, as they directly influence
community resilience and adaptive capacity in
landslide-prone areas (Xu et al., 2018).

Padang Panjang City, located in the highlands
of West Sumatra, is highly susceptible to landslides
due to its steep topography and high annual rainfall
(Z. Umar, Pradhan, Ahmad, Jebur, & Tehrany,
2014). As a densely populated urban area situated
within a volcanic mountainous landscape, Padang
Panjang has experienced multiple landslide events
in recent years, resulting in significant disruptions to
infrastructure, agricultural productivity, and local
livelihoods (Faris & Fawu, 2014). Historical records
indicate that landslides frequently occur along major
transportation routes, cutting off access between
districts and causing economic losses (Purnawan &
Khairah, 2021). Furthermore, the combination of
rapid urbanization and land-use changes such as
deforestation and slope modifications for settlement
expansion has exacerbated the risk of slopefailures
(Johnston et al., 2021). The lack of comprehensive
spatial assessments has led to inadequate
mitigation measures, leaving many communities
vulnerable to landslide hazards (Triyatno et al.,
2020). Given these conditions, Padang Panjang is
an important case study fordeveloping a GIS-based
landslide hazard zoning model, which can help
inform sustainable urban planning and disaster
preparedness efforts.

The primary objective of this research is to
apply a spatial approach, leveraging GIS
technology, to produce a landslide hazard map for
the highlands of Padang Panjang City, West
Sumatra. To achieve this objective, the study
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examines key aspects such as land-use changes
from 2012 to 2022 and a detailed landslide hazard
assessment within the Padang Panjang City area,
located in the highlands of Sumatra Island. The
landslide hazard zonation model developed in this
study has significant implications. Beyond providing
a scientific basis for spatial planning, it serves as a
decision-support tool for disaster risk mitigation,
thereby enhancing preparedness for natural
disasters.

METHOD
Study Area

Our case study focuses on one of the cities in
the West Sumatra region, located in the highlands
of West Sumatra (Figure 1). Padang Panjang City
is characterized by mountainous topography and
high rainfall, making it particularly susceptible to
natural disasters, especially landslides. Various
human activities, particularly in the land
development sector, play a significant role in
meeting daily needs. With an elevation of
approximately 539 meters above sea level, the area
supports thriving horticultural crops and a robust
agricultural sector. However, the population size is
relatively small compared to typical urbanized
areas. Despite being administratively categorized
as a city, the population, according to the 2022
census, was recorded at 57,850 people (BPS,
2021).
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Figure 1. Research location.

Datasets

Measuring landslide movement hazards is
crucial for managing hydrometeorology-related
disasters and assessing damage risks. Landslide
hazards, particularly in upland areas, have
significant impacts on urban regions, including
infrastructure damage, socio-economic disruption,
threats to public safety, and extensive

environmental degradation. A landslide hazard
analysis was conducted for the upland areas within
the administrative boundaries of Padang Panjang
City, Indonesia. This analysis employed four main
criteria, encompassing various physical
characteristics of landslide-prone environments.
The datasets used include the Digital Elevation
Model Nasional (DEMNAS) obtained from the
Geospatial Information Agency
(tanahair.indonesia.go.id), soil type data from the
Indonesian Center for Agricultural Land Resources
Research and Development
(sdlp.bsip.pertanian.go.id), and rainfall data
categorized into two periods (2002-2012 and 2013—
2022) sourced from the Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS)
website (www.chc.ucsb.edu). Additionally, Landsat
7 ETM and 8 OLI imagery was retrieved from the
United States Geological Survey (USGS) Earth
Explorer platform (earthexplorer.usgs.gov), while
event data were recorded by regional disaster
management agencies.

Given the varying resolutions and scales of
these datasets, the final landslide hazard zonation
map was standardized to a spatial resolution of 30
meters, ensuring consistency across all raster-
based analyses. The soil type data, initially
available as a vector dataset at a scale of 1:50,000,
were converted into a raster format within the GIS
environment to align with other spatial datasets. To
maintain consistency, a resampling process was
applied, interpolating the vector data into a 30-meter
raster grid. This transformation enabled seamless
integration with other raster-based datasets, such
as slope, rainfall, and land use. The resampling
method was carefully selected to preserve the
spatial integrity of the original dataset while
minimizing potential distortions, ensuring accuracy
in the landslide hazard modeling process.

Similarly, rainfall data, originally available as a
raster dataset with a spatial resolution of 1 km, were
processed to match the 30-meter resolution used in
the final analysis. This adjustment was necessary to
maintain consistency across all spatial datasets and
facilitate accurate integration within the GIS-based
landslide hazard zonation model. The resampling
process was performed using bilinear interpolation,
a technique that smooths transitions between
adjacent pixel values while preserving the spatial
gradient of precipitation distribution. This method
was chosento ensure precipitation variability across
the study area was accurately represented,
minimizing distortions in the downscaled data. By
standardizing the resolution of all datasets to 30
meters, this study ensures that all contributing
factors including topography, soil type, land use,
and rainfall are analyzed at the same spatial scale,
thereby enhancing the reliability and accuracy of the
final landslide hazard zonation map. The detailed
criteria and data sources utilized in the analysis are
summarized in Table 1.
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Table 1. Catalog of datasets applied in the research.
Datasets Type Resolution/ Scale Sources
Incident Vector 1:1.000 Regional Disaster Management Agency
Slope Raster 8 meters Geospatial Information Agency
Soil type Vector 1:50.000 Indonesian Center for Agricultural Land Resources Research and
Development
Rainfall Raster 1km Climate Hazards Group InfraRed Precipitation with Station data
Landuse 2012 Raster 30 meters United States Geological Survey
and 2022

In GIS-based spatial analysis, the choice of
map scale plays a crucial role in determining
accuracy and precision. Map-based studies should
explicitly declare and discuss the scale used, as not
all map scales allow for accurate area calculations.
The selected map scale also affects the precision
and reliability of spatial analysis, especially when
integrating multiple datasets.

The overlay and combination of different maps
must consider variations in boundary delineation
methods. Climatic maps often rely on interpolation
techniques, soil maps are typically interpretative
based on landform characteristics, while slope
maps are generated using pixel-based calculations.
Since these datasets employ different boundary
delineation approaches, their direct integration in
GIS analysis may introduce inconsistencies.
Furthermore, considering the accuracy assessment
results based on the Area Under the Curve (AUC)
method, it is possible that the obtained accuracy

levels may be coincidental rather than fuly
representative of actual hazard conditions.

Analysis

The distribution of landslide’s potential hazard
is the result of a combination of soil movement
activities and the unstable hydrological cycle (Afzal
et al., 2022). Generally, the disaster occurs bond to
the topographical category that is steep to a very
deep, and can also be rather steep with open
surface cover without a barrier on the surface
(Vojtekova & Vojtek, 2020). In this study, statistical
analysis of the physical characteristics of the
potential for landslides was supported by a review
of relevant literature and adapted to the conditions
of the Padang Panjang City area, West Sumatra.
The parameter information used in the study is as
follows (Table 2):

Table 2. Parameters used in research.
No Parameters Sub-parameters Score Weight
1 Slope 0-8% 0.02
8-15% 0.07
15-25% 0.15 40%
25-40% 0.32
>40% 0.45
2 Type of Soil Mediterranean 0.30 20%
Cambisol 0.20
3 Rainfall 0-100mm 0.40
(mm/month) 100-200mm 0.30 10%
>200mm 0.20
4 Land Use Forest 0.01
Paddy Field 0.06
Settlement 0.09 30%
Mixed Plantation 0.21
Dryland farming 0.38

Source: (Amaluddin et al., 2020)

Findings fromlandslide hazard zones with sub-
parameter factors studied will produce relatively
appropriate results in providing disaster spatial
information. Where the slope > 25% is prone to
landslides, and the mediterranean soil type has soll
characteristics that have an influence on the
occurrence of landslides in a land (Zhao et al.,
2022). Differences in land use types have different
impacts on landslides. While climatological factors
help accelerate the occurrence of landslides by
carrying out soil erosion on the characteristics of
open land cover and land with weak tree roots. This
will suggestin planning a land use that is safe and
reducing the risk from various human activities on
the land (Li et al., 2022).
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Assessment of Accuracy

The accuracy assessment stageis an essential
component of spatial data analysis. This research
employs two primary methods for accuracy
evaluation: the confusion matrix and the Area Under
the Curve (AUC) approach. The AUC method,
introduced by Swets (1988), is widely utilized for
assessing accuracy in spatial modeling (Swets,
1988). Land use data requires an evaluation of
classification accuracy to ensure its applicability for
subsequent analysis, particularly in landslide
hazard model assessments.

The process begins with the collection of
geographical coordinates for land use across
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various years, using a total of 400 samples derived
from high-resolution imagery. The accuracy of the
landslide hazard modelis then evaluated using the
Receiver Operating Characteristics (ROC) curve.
Historical landslide event data was sourced from the
archives of the regional disaster management
agency, with 37 events recorded up to 2012 and 45
events recorded from 2013 to 2022. Geographical
coordinates were collected through field surveys
and supplemented with imagery from Google Earth.
To enhance the analysis, external tools were
incorporated into Python-based machine learning
algorithms to generate the AUC values. Finally, the
classification results of the landslide hazard model
are calculated in this section, with the AUC graph
serving as the output to represent the accuracy
assessment.

RESULTS
Land use change in 2012-2022

Land use change reflects the dynamics of land
utilization influenced by various factors, including
population growth, urbanization, and shifts in
agricultural practices. In the context of geography
and sustainability, analyzing land use change is
essential for understanding the environmental,
social, and economic impacts of land conversion
processes, as well as the implications of
hydrometeorological natural disasters (Giofandi et
al., 2024).

In 2012, the region was predominantly
characterized by forest land and agricultural land,
including dryland farming and mixed agriculture.
Built-up areas were relatively limited, indicating that
the majority of the land was utilized for agricultural
activities and the preservation of forest ecosystems.
This diverse land use pattern reflects traditional
practices that support local sustainability and food
security while highlighting potential conflicts
between development needs and environmental
conservation (Ambarwulan et al., 2023). However,
by 2022, a significant transformation in land use
distribution had occurred. The region experienced
rapid urbanization, as evidenced by a notable
increase in built-up areas (marked in red),
particularly in the city center and surrounding
regions (Figure 2). This transition not only signifies
economic growth and infrastructure development
but also introduces new challenges related to
environmental sustainability, such as habitat loss,
soil degradation, and increased pressure on water
resources

The phenomenon of increasing land use is
evident in the drastic reduction of forest areas
during this period. In 2012, forests covered 535.58
hectares, but much of this land was converted into
built-up areas and other agricultural land by 2022
(Table 3). Additionally, mixed agricultural land
experienced a decline, while paddy fields showed
significant expansion. This reduction in forest and
mixed agricultural land highlights increasing
pressure on land resources, which can have
adverse effects on biodiversity and disrupt the
balance of local ecosystems. The growth of paddy
fields, attributed to the conversion of dryland and
mixed-use areas, illustrates agricultural
intensification but also underscores the trade-offs
between land conservation and agricultural
development. Built-up areas expanded rapidly,
covering an additional 422 management to strike a
balance between urban development and
environmental  preservation. These  findings
underscore the importance of sustainable land use
planning to
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Figure 2. Land use of the research areain (a) 2022,

and (b) 2012.

Table 3. Land use changes in the Padang Panjang City for the period 2012-2022.
Category 2012 2022 Change
Area (ha) (%) Area (ha) (%) Area (ha) (%)
Forest 725 35.04 588 28.42 -137 -6.62
Mixed garden 16 0.77 55 2.66 39 1.88
Dry land farming 98 4.74 8 0.39 -90 -4.35
Paddy field 808 39.05 785 37.94 -23 -1.11
Built-up 422 20.40 633 30.59 211 10.20
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Table 4. User accuracy (UA) and producer accuracy (PA) of LULC category for 2012-2022.

Category 2012 2022
UA (%) PA (%) UA (%) PA (%)
Forest 95.65 91.67 92.68 97.44
Mixed garden 86.47 88.36 80.00 82.28
Dry land farming 85.71 85.71 88.24 89.36
Paddy field 89.47 96.23 97.92 90.38
Built-up 92.31 85.71 92.86 95.12
Overall Accuracy 92.03 - 94.16 -
Kappa Coefficient 93.07 - 96.24 -

minimize environmental degradation while meeting
the needs of the population.

The accuracy assessment stage plays a crucial
role in evaluating land use mapping, as it provides
insight into how well the classifications derived from
remote sensing imagery align with actual ground
conditions. Forland use analysis in 2012 and 2022,
the User Accuracy (UA) and Producer Accuracy
(PA) metrics measure the reliability of the
classifications and their effectiveness in identifying
specific land use types (Table 4). These accuracy
evaluations were based on 400 samples taken from
high-resolution imagery (Google Earth), offering a
robust foundation for analysis

Forforest areas, the high UA (95.65%) and PA
(91.67%) in 2012 indicate strong classification
accuracy, meaning most areas identified as forests
were indeed forests in reality. However, by 2022,
while the PA improved to 97.44%, the UA slightly
declined to  92.68%, suggesting  some
misclassification between forests and other
vegetated areas due to land cover transitions. This
shift is consistent with the decreasing forest cover
observed in the study, where small forest patches
may have been misidentified as mixed agriculture or
degraded land due to spectral similarities in satellite
imagery.

The classification of mixed agricultural land
posed a greater challenge, as indicated by lower UA
(86.47%) and PA (88.36%) in 2012, which further
declined in 2022 (UA: 80.00%, PA: 82.28%). This
reduction highlights increasing classification
ambiguity, likely due to overlapping spectral
characteristics between different agricultural types
(e.g., mixed cropping and dryland farming). The
fragmentation of agricultural landscapes and
seasonal land use variability may have contributed
to classification inconsistencies, requiring more
refined spectral differentiation techniques in future
studies.

The paddy field classification exhibited
consistent improvements, with UA increasing from
89.47% in 2012 t0 97.92% in 2022, while PA slightly
decreased from 96.23% to 90.38%. This indicates
that the classification process became more

76

effective in correctly identifying paddy fields, but
some areas may have been misclassified as
wetlands or agricultural fields due to seasonal water
fluctuations. Given that paddy fields expanded
significantly during the study period, maintaining
classification accuracy is essential for analyzing
agricultural land use impacts on hydrological
dynamics.

Built-up areas demonstrated reliable
classification accuracy, with UA of 92.31% and PA
of 85.71% in 2012, improving to UA of 92.86% and
PA of 95.12% in 2022. The increase in PA suggests
better identification of urbanized regions, while
consistent UA values confirm that most built-up
areas were accurately detected. However, slight
misclassifications may have occurred between
urban and industrial land uses, requiring further
refinement in classification algorithms to distinguish
between different types of built environments.

The overall classification accuracy improved
from 92.03% in 2012 to 94.16% in 2022, with the
Kappa coefficient increasing from 93.07 to 96.24,
indicating a high level of agreement between
classified land use types and reference data. These
improvements reflect advancements in data
processing techniques, the use of high-resolution
reference samples, and refined classification
methods, making the land use dataset a reliable
basis for landslide hazard assessment.

Landslide Hazard Model

The parameters used in this assessment
include slope, soil type, monthly rainfall, and land
use (Figure 3). A thorough understanding of these
parameters facilitates decision-making related to
risk mitigation, spatial planning, and environmental
preservation (Mersha & Meten, 2020). Data
collected over different periods, such as rainfall data
from 2002—2012 and 2013-2022, as well as land
use data from 2012 and 2022, provide a
comprehensive overview of the changes occurring
in the study area.
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Figure 3.

In landslide studies, hazard refers to the
probability of landslide occurrence based on
physical factors such as slope, soil type, and
rainfall. However, landslide hazard potential is
influenced by the interaction of these physical
factors with environmental changes, particularly
land use modifications. The slope parameter
reveals that most of the area falls within the 0-8°
slope category, which accounts for 54.57% of the
totalarea (Table 5). This indicates that relatively flat
slopes have a lower potential forlandslide hazards.
Conversely, the 8-15° and 15-25° slope categories
account for 15.66% and 15.47%, respectively,
suggesting a moderate hazard of landslides in these
steeper areas. However, the more extreme slope
categories, such as 25-40° and above 40°,
represent smaller proportions of 12.71% and
1.59%, respectively. This finding indicates that
although there are high-hazard areas, most of the
region does not have sufficient slope steepness to
significantly increase landslide hazard potential.

-
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The parameters used in the study include (a) slope; (b) soil type; (c) rainfallin 2012; (d) rainfallin 2022, (e)
land use in 2012, and (f) land use in 2022.

The analysis of soil types is also critical in
landslide hazard assessments. According to the
data, Cambisols dominate, covering 67.86% of the
area, while Mediterranean soils accountfor32.14%.
Cambisols, known for their favorable physical and
chemical properties for agriculture, may contribute
to landslide hazard potential if not managed
appropriately, particularly on steep slopes. Thus,
understanding these soil types is essential for
planning effective mitigation measures.

Monthly rainfall data indicate significant
differences between the 2002-2012 and 2013-
2022 periods. During the 2002-2012 period, rainfall
in the 200-300 mm range accounted for 42.19%,
highlighting a high frequency of rainfall capable of
triggering landslides. In contrast, during the 2013—
2022 period, the 100-200 mm range dominated,
comprising 71.77%, indicating a shift in rainfall
patterns. The decrease in extreme rainfall events
(0—100 mm) during the latter period suggests a
potential reduction in landslide hazard potential.
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Table 5. Area and percentage of parameters in research.
No Parameters Categories Area (ha) Percentage (%)

1 Slope 0-8 1,129 54 .57
(%) 8-15 324 15.66
15-25 320 15.47
25-40 263 12.71
>40 33 1.59
2 Type of Soil Mediterranean 665 32.14
Cambisol 1,404 67.86
3 Rainfall 0-100mm 374 18.08
(mm/month) 100-200mm 1,485 71.77
in 2002-2012 200-300mm 210 10.15
4 Rainfall 0-100mm 374 18.08
(mm/month) 100-200mm 1,485 71.77
in 2013-2022 200-300mm 210 10.15
5 Land Use Forest 657 31.75
in 2012 Mixed Plantation 60 2.90
Dryland Farming 433 20.93
Paddy Fields 8 0.39
Settlement 905 43.74
Water Body 6 0.29
6 Land Use Forest 657 31.75
in 2022 Mixed Plantation 60 2.90
Dryland Farming 433 20.93
Paddy Fields 8 0.39
Settlement 905 43.74
Water Body 6 0.29

In the context of landslide studies, risk is a Conversely, settlement areas increased

function of hazard, vulnerability, and capacity.
Hazard refers to the probability of landslide
occurrence based on physical factors such as
slope, rainfall, and soil type. Vulnerability, on the
other hand, describes the susceptibility of elements
at risk (e.g., populations, infrastructure, and
ecosystems) to the impacts of alandslide (He et al.,
2024). Capacity represents the ability to mitigate or
adapt to these hazards through structural and non-
structural measures (Broquet et al., 2024). When a
region experiences increased hazard potential such
as high rainfall variability without adequate
mitigation measures to reduce vulnerability, the
overall landslide risk increases (Ceccato et al.,
2024). Therefore, although fluctuations in rainfall
patterns may not directly translate to an immediate
increase in hazard, they can influence the frequency
and intensity of landslides over time, particularly in
areas with high vulnerability and low adaptive
capacity. However, significant fluctuations in rainfall
still pose a hazard, emphasizing the importance of
continuous monitoring. Land use changes between
2012 and 2022 have likely influenced landslide
hazards. In 2012, forests covered 35.04% of the
area, but by 2022, this had decreased to 28.42%.
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significantly from 20.40% to 30.59% over the same
period. The reduction in forest area heightens
landslide hazard potential due to the loss of
vegetation that stabilizes soil. Additionally, the
decline in dry agricultural land and the increase in
mixed land use reflect a shift in land use patterns
that may affect soil stability.

Based on the analysis of parameters
influencing landslide hazards, it is evident that the
combinationof slope, soiltype, rainfall, and land use
changes significantly contributes to the potential for
landslides in the area. The reduction in forest cover
and the expansion of settlement areas are
particularly concerning in terms of landslide hazard
mitigation. Furthermore, changes in rainfall patterns
over time underscore the importance of data-driven
mitigation planning. A comprehensive
understanding of these environmental changes is
crucial for identifying areas at high hazard of
landslides (Dai et al., 2022). Considering these
parameters, the next step is to conduct landslide
hazard zonation, which will classify and map areas
with varying degrees of landslide hazard across the
study area.
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Figure 4. Landslide hazard zone in Padang Panjang City in (a) 2012, and (b) 2022
Table 6. Area and percentage of parameters in research.
Cat Area (ha) Percentage (%)
ategory 2012 2022 2012 2022
High 281 301 13.58 14.55
Medium 406 341 19.62 16.48
Low 1,382 1,427 66.80 68.97
Landslide hazard zonation, based on aggregating smaller hazard patches that may have

parameters such as slope, soil type, rainfall, and
land use, provides a systematic perspective on
areas vulnerable to disasters. Data from 2012 and
2022 illustrate changes in landslide hazard
zonation, reflecting environmental dynamics that
may affect regional stability (Figure 4). The
landslide hazard zonation mapping was conducted
by integrating multiple spatial parameters, including
slope, soil type, rainfall, and land use. Given the
scale and resolution of the available data, a
generalization process was applied to ensure
consistency and accuracy in the delineation of
hazard zones. This processinvolved smoothing and

resulted from high resolution spatial variations,
preventing over fragmentation in  hazard
classification (Reichenbach et al., 2018).

Additionally, the mapping scale influenced the
level of detail in hazard classification, where finer-
resolution data would potentially yield more
fragmented zonation (Shano et al., 2020). However,
the adopted methodology ensures that the final
hazard zonation  represents a  balanced
interpretation between detail and practical usability,
minimizing excessive complexity while maintaining
spatial accuracy.
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In 2012, areas classified as having a high
landslide hazard accounted for 13.58% of the total
area (Table 6). Although the overall change in
landslide hazard zonation appears to be less than
5%, this variation still holds significance from a
hazard management perspective. Even minor
increases in high hazard zones may indicate
localized environmental degradation, particularly in
areas undergoing deforestation and urban
expansion (Depicker et al., 2021). Additionally,
small changes in hazard classification can have
substantial implications for communities,
infrastructure planning, and early warning systems.
Therefore, while the numerical percentage change
is relatively low, its spatial distribution and
underlying causes warrant further attention in
landslide hazard mitigation strategies.

These zones typically include regions with
steep slopes, erosion-prone soil types, and high
rainfall. The medium hazard zone covered 19.62%,
while the low hazard zone dominated at 66.80%. In
landslide studies, hazard and risk are distinct yet
interconnected concepts. Landslide hazard refers to
the probability of alandslide occurring in a specific
area, based on physical and environmental factors
such as slope, soil type, and rainfall. However, risk
is a function of both hazard and vulnerability, where
vulnerability encompasses exposure and the
inability of affected elements (e.g., infrastructure,
population, and ecosystems)to cope with or recover
from landslide impacts (Shah et al., 2023). Thus,
even in areas classified as low hazard zones, risk
can still be significantif the vulnerability is high, such
as in densely populated settlements or regions with
inadequate mitigation measures. The large
proportion of low hazard zones suggests that a
substantial portion of the area experiences relatively
low landslide hazard potential.

In 2022, the high landslide hazard zone
expanded to 14.55%, reflecting an increase in high
hazard areas. This growth is attributed to land use
changes, such as reduced forest cover and
increased settlement areas, which exacerbate the
potential hazard of landslides. The medium hazard
zone decreased to 16.48%, while the low hazard
zone rose to 68.97%. The increase in low-hazard
zones suggests that mitigation measures, such as
vegetation restoration or erosion control, may have
been implemented to reduce landslide potential.
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Figure 5.

The accuracy of landslide hazard zonation
mapping is another important indicator of the
reliability of zoning results. In 2012, the mapping
accuracy reached 95%, indicating that most of the
hazard classifications aligned with actual field
conditions (Figure 5). This accuracy slightly
decreased to 92% in 2022, remaining within the
excellent category. The decline may be attributed to
increasingly dynamic changes in rainfall patterns
and land use, which could affect zonation
classification results. The integration of landslide
hazard parameter analysis—including slope, soil
type, rainfall, and land use changes—with landslide
hazard zonation offers a comprehensive view of
landslide hazard potential within the area. The slight
increase in high hazard zones by 2022 underscores
the urgency for more intensive mitigation efforts.

DISCUSSION

Landslide hazard zoning is a highly important
toolforplanning and disaster mitigationin landslide-
prone regions. By using a GIS approach, landslide
hazard mapping enables the identification of areas
most vulnerable to landslide threats (Aydin et al.,
2022). The use of GIS also offers advantages in
accurate and efficient spatial visualization, which
greatly assists stakeholders in making data-driven
decisions (Liu et al., 2022). This model can integrate
various environmental parameters such as slope
gradient, soil type, land use, and rainfall to produce
comprehensive zoning maps. Its application allows
for the integration of data from multiple sources,
making it a highly effective tool for developing
prevention and mitigation strategies (Nohani et al.,
2019).

Landslide hazard zoning specifically focuses
onidentifying areas susceptible to landslides based
on physical and environmental factors, without
directly accounting for social vulnerability or coping
capacity (Pourghasemi et al., 2018). Understanding
this distinction is crucial for effective disaster
reduction strategies, as risk assessment requires an
integrated approach that includes vulnerability
analysis and capacity building (Nanehkaran et al.,
2023).

The results of landslide hazard zoning have
significant implications for urban spatial planning.
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Padang Panjang City, as a highland area, faces
major challenges in disaster management. This
zoning maps high hazard, medium hazard, and low
hazard areas, providing critical input for local
governments in regulating development. For
example, high hazard areas should ideally be
designated as conservation zones or allocated for
low hazard uses, such as protected forests or green
zones. Meanwhile, low hazard areas are more
suitable for infrastructure development and
residential expansion. In other words, this zoning
helps align spatial plans with natural realities and
potential disaster, enabling sustainable
development.

Landslide hazard mapping also plays a crucial
role in enhancing disaster preparedness. By
delineating hazard prone areas, this mapping allows
decision makers to prioritize mitigation efforts and
allocate resources efficiently (Sun et al., 2022). High
hazard zones can be targeted for early warning
systems, slope stabilization projects, and
community-based disaster risk reduction programs
(Zeng et al., 2021). Additionally, hazard maps
provide essential information for land use planning,
ensuring that new developments do not encroach
on unstable areas (Tjahjono et al., 2024). By
integrating hazard zoning into policy frameworks,
local governments can strengthen resilience and
minimize potential losses.

Landslide hazard zoning models must also
consider social and economic dimensions. Areas
identified as high-risk zones require greater
attention in the form of mitigation policies, such as
restrictions on development, relocation of residents
living in vulnerable areas, or stricter enforcement of
environmental regulations (Firmansyah et al,
2019). Additionally, educating communities living in
high-risk areas is crucial to raising awareness of
potential disasters and preventive measures
(Ahyuni et al., 2022). This will reduce material and
non-material losses that may arise from disasters.
On the other hand, governments can also use this
zoning to design sustainable economic
development policies while prioritizing community
safety and well-being (Umar et al., 2019).

Furthermore, the GIS-based approach to
landslide hazard modeling emphasizes the
importance of environmental dynamics in the zoning
process (Xiong et al., 2017). Changes in land use,
forest degradation, or increased rainfall due to
climate change can affect soil stability and increase
landslide hazard potential. Therefore, it is essential
to regularly update zoning data to reflect the latest
conditions. This zoning provides a scientific basis
for more adaptive and hazard-based spatial
policies, which are crucial in disaster-prone areas.
Additionally, it plays a vital role in supporting
environmental  conservation by designating
conservation areas in high-risk zones (Diva et al.,
2018). At the same time, it helps direct development
to safer areas, ensuring a balance between
development and environmental protection (Muzani
et al.,, 2021). Through this approach, Padang

Panjang City can manage landslide zoning more
effectively and achieve sustainable, disaster-
resilient development. Thus, hazard is not static but
evolves with environmental and anthropogenic
changes (Berhane et al., 2021). While hazard
zoning identifies areas with potential instability, risk
can escalate over time if vulnerability factors such
as population density, unplanned urbanization, and
lack of mitigation infrastructure are not addressed
(Zhang et al., 2021).

Researchers acknowledge that this study has
limitations in the application of variables and other
assessment elements. In terms of information, the
insights drawn from this study focus on assessing
landslide-prone zones in relation to human
activities. This disaster assessment factoris one of
the key points in determining high hazard
characteristics in Padang Panjang City. This raises
challenges in data resolution, socio-economic
activities of the community, and the need for spatial
data standardization to produce renewable
information. It is hoped that future research will
consider aspects not included in this study and
incorporate environmentally friendly technological
solutions to monitor ground movements in real time
and with greater accuracy.

CONCLUSION

The conclusion of this study emphasizes the
importance of applying a GIS-based landslide
hazard zoning model in managing landslide
potential in highland areas. This zoning serves as a
hazard-based decision-making tool that helps
minimize economic and social losses due to
disasters. Furthermore, the study also highlights the
need fordisastermitigation policies that are not only
reactive butalso proactive. Landslide hazard zoning
should be considered in all spatial planning policies
and infrastructure development. Public awareness
of landslide zonation is also a crucial part of the
mitigation strategy, where educating the community
on preventive actions is essential. Through the
integration of technology and data-driven policies, it
is expected that landslide hazard potential can be
managed more efficiently, creating a safer
environment, and ensuring the welfare of the
community in the future.
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