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ABSTRACT 

Efforts to inventory macroalgae are urgently needed, mainly to provide information on its potential to 
produce sodium alginate. Recently, the availability of various satellite sensors and rapidly developing 
algorithms for processing satellite imagery can map macroalgae habitats more accurately. This study aims to 
map the benthic habitat and assess the potential of brown macroalgae by pixel-based classification approach 
with the maximum likelihood (MLH) and support vector machine (SVM) algorithms. The sampling site of this 
study was in Pannikiang Island, and the survey conducted in September and October 2020. A total of 400 field 
collection data was used as a reference to classify the benthic habitats and to test the map accuracies derived 
from the Pleiades-1A (P-1A) and Sentinel-2A (S-2A) satellite imageries. Results show that at least three 
species of brown and two species of green macroalgae were detected and dominated at the study sites. 
Benthic habitat was classified into seven classes. The P-1A image produced overall accuracy for the MLH 
algorithm (70.4%) and SVM (71.9%), while the S-2A image produced overall accuracy for the MLH algorithm 
(68.6%) and SVM (67.6%). The assessment of the potential stock of sodium alginate using P-1A and S-2A 
was 133.8 tons and 116.6 tons, respectively. This mapping technique was effective and efficient in mapping, 
predicting, monitoring, and managing the potential of brown macroalgae. 

Keywords: algorithms, benthic habitat, macroalgae, Pannikiang Island, satellite image 

ABSTRAK 

Upaya inventarisasi makroalga sangat diperlukan, terutama pemanfaatan potensinya dalam 
memproduksi Natrium alginat (Na-alginat). Belakangan ini, ketersediaan berbagai sensor satelit dan algoritma 
berkembang pesat melalui pemrosesan citra satelit dalam memetakan habitat makroalga dengan lebih akurat. 
Penelitian ini bertujuan untuk memetakan habitat bentik dan potensi makroalga dengan pengujian klasifikasi 
pemetaan berbasis piksel dengan algoritma maximum likelihood (MLH) dan support vector machine (SVM). 
Lokasi pengambilan sampel adalah di Pulau Pannikiang pada bulan September dan Oktober 2020. Sebanyak 
400 data diperoleh dari pengamatan lapangan digunakan sebagai acuan untuk mengklasifikasikan habitat 
bentik dan menguji akurasi peta yang diturunkan dari citra satelit Pleiades-1A (P-1A) dan Sentinel-2A (S-2A). 
Hasil penelitian menunjukkan setidaknya ada tiga spesies makroalga cokelat dan dua spesies makroalga hijau 
yang mendominasi di lokasi penelitian. Klasifikasi habitat bentik menghasilkan tujuh kelas. Citra P-1A 
memproduksi akurasi keseluruhan masing-masing untuk algoritma MLH (70,4%) dan SVM (71,9%), 
sementara citra S-2A menghasilkan akurasi keseluruhan untuk algoritma MLH (68,6%) dan SVM (67,6%). 
Dugaan potensi stok Na-alginat yang diekstraksi dari citra P-1A dan S-2A masing-masing sebesar 133,8 ton 
dan 116,6 ton. Teknik pemetaan ini efektif dan efisien untuk memetakan, menduga, memantau, dan mengelola 
potensi makroalga cokelat. 

Kata kunci: algoritma, habitat bentik, makroalga, Pulau Pannikiang, citra satelit 

INTRODUCTION 

Macroalgae is one of the components in 
marine ecosystems with high species richness and 
also contains various bioactive substances, so it 
plays a significant role in diverse ecological and 
economic aspects (Satheesh & Wesley, 2012; 
Ayhuan et al., 2017; Sun et al., 2018). Various 

substances contained in macroalgae can potentially 
be raw materials supporting multiple industries. For 
example, brown macroalgae contain biomass and 
sodium alginate (Na-alginate) (Calumpong et al., 
1999; Zailanie et al., 2001; Jr & Cunha, 2006), which 
significantly supports the pharmaceutical/medical 
(cosmetic) industries, food-beverages, as well as 
non-food industries (paints, textiles, and 
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toothpaste), because of their ability as emulsifiers 
and thickeners (Parthiban et al., 2013).  

Indonesia requires large amounts of Na-
alginate stocks for various industries, but data and 
information on the potential distribution of brown 
macroalgae are still limited, so it needs to be 
mapped based on remote sensing technology 
through various satellites. Recently, the availability 
of different satellite sensors with better spatial, 
spectral, and radiometric resolutions has been 
matched by the development of machine learning 
classification algorithms, resulting in more accurate 
mapping and potential estimation. Pramaditya 
Wicaksono (2014) mapped macroalgae based on 
their pigmentation (brown, green, red, and mixed 
macroalgae) on Kemujan Island using the maximum 
likelihood (MLH), Mahalanobis, and minimum 
distance algorithms applied to the Worldview-2 (2 
m) satellite image. Wouthuyzen et al. (2016) 
mapped the habitat of brown macroalgae using 
Landsat-7 ETM+ (30 m) satellite imagery by 
applying the iso cluster method on the coastal coast 
of Bitung-Bentena, North Sulawesi. Setyawidati et 
al. (2018b) used GeoEye-1 (1.65 m) satellite 
imagery to map the geomorphological structure of 
macroalgal habitat with MLH classification on 
Libukang Island, Mallasoro Bay, South Sulawesi. 
Several previous studies were able to map 
macroalgal habitats with sufficient accuracy, but 
misclassification could only partially be avoided. 
The main factor causing the error is the symbiosis 
of macroalgae habitats with other benthic habitats 
such as coral reefs, rubble (coral fractures), 
seagrass, and other substrates that are difficult to 
separate. In addition, variations in pigments (green, 
brown, and red) of macroalgae pose a challenge in 
identifying and mapping macroalgae (Wicaksono, 

2014; Wicaksono et al., 2019). The solution to 
overcome these problems was to use several 
algorithms in machine learning algorithms such as 
support vector machine (SVM), random forest (RF), 
and classification tree analysis (CTA) (Wicaksono et 
al., 2019). These algorithms were applied to the 
Worldview-2 satellite imagery, which produced 
excellent accuracy for 14 benthic and macroalgal 
habitat classes on Kemujan Island, Karimunjawa 
Archipelago.   

Mapping macroalgae habitats in Central 
Indonesia has yet to be widely carried out, 
especially in South Sulawesi Province. Meanwhile, 
the area has the potential to produce seaweed 
(macroalgae) with a production value of 3.4 million 
tons in 2016, based on a report by the Ministry of 
Marine Affairs and Fisheries (2018). One of the 
islands in the Spermonde Cluster, which is quite 
large, is Pannikiang Island, located in Barru 
Regency. Unfortunately, there is no spatial 
information regarding the distribution of benthic and 
macroalgae habitats and their potential on the 
island. Until now, there has been no standardization 
in mapping benthic habitats from macroalgal 
habitats (Wicaksono, 2016) so a comparative study 
of classification algorithms is critical to be applied in 
quite complex areas such as Pannikiang Island. 
Based on this description, this study aims to test the 
performance of the pixel-based classification 
algorithms, namely the MLH and SVM algorithms, 
to map macroalgae habitats and estimate the 
potential of Na-alginate on Pannikiang Island, Barru 
Regency, South Sulawesi. Additionally, to know the 
diversity of satellite imagery with different spatial 
resolutions in mapping using high-resolution 
satellite imagery of Pleiades-1A (2 meters) and 
medium Sentinel-2A (10 meters). 

 
Figure 1.  Map of research locations on Pannikiang Island showing sampling points (red dots) and stations for 

estimating Na-alginate stock(yellow dots). 
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METHODS 

Study Area and Investigate Time  

This research was conducted on Pannikiang 
Island, Barru Regency, South Sulawesi. 
Geographically, the island is located between 
4°20'00" South Latitude; 119°34'30" East 
Longitude; and 4°22'15" South Latitude and 
119°36'30" East Longitude (Figure 1). Field 
observations were accomplished on 4–7 September 
and 4–26 October 2020. Water quality analysis was 
carried out at the Chemical Oceanography 
Laboratory; macroalgae biomass measurements at 
the Oceanographic Physics and Coastal 
Geomorphology Laboratory; and extraction and 
analysis of Na-alginate were carried out at the 
Water Productivity and Quality Laboratory. The 
entire sample was analyzed at the Faculty of Marine 
and Fisheries Sciences, Hasanuddin University. 

Tools and materials 

The tools and materials used during sampling 
were the Global Positioning System (GPS) type 
GPSmap 78s, basic snorkeling equipment, 
underwater camera, 1x1 meter quadrant transect, 
identification book, sample bag, sample bottle, and 
stationery. The satellite data used were P-1A 
(acquisition May 11, 2020), obtained from Parepare 
Remote Sensing Earth Station, Indonesia, and S-2A 
satellite (the date of acquisition was August 22, 
2020), downloaded from the USGS website 
(earthexplorer.usgs.gov). The specifications of the 
two satellites are presented in Table 1. 

Field Observation 

A sampling of macroalgal habitat was 
conducted by applying a photo transect method 
using 1x1 meter frame (Roelfsema & Phinn, 2008). 
The parameters recorded included a transect of 
GPS positions, a percentage of benthic habitat 
cover, and a sampling of brown macroalgae, 
Sargassum sp, and Turbinaria sp from the transect 
frame. The sampling of these macroalga was stored 
in sample bags. In total, 400 points were captured 
from benthic habitats used to build a classification 
scheme and test the accuracy of the classification 
algorithm. 

Preprocessing of Satellite Data 

Radiometric correction of P-1A and S-2A 
image data was conducted using the Dark Object 
Subtraction (DOS) method. If ND is greater than 0 

(ND minimum/NDmin), then the difference in value 
between 0 and Dmin is considered a bias due to the 
influence of the atmosphere. These disturbances 
can be minimized by using the Equation 1 
(Prayudha, 2014) as follows: 

NP′i = NPi − NP𝑚𝑖𝑛I ……………………………… (1) 

Where:  

NP' i = the pixel value of the correction result 
NPi = the pixel value of the image in channel/band i 
NPmin i = the minimum pixel value in band i 

Tidal Conditions 

The sun glint phenomenon as a reflection of 
the light recorder on the sensor field only occurs on 
the water surface in high tide conditions. 
Meanwhile, water column correction is needed to 
eliminate errors in pixel values due to attenuation of 
the surface water before reaching the bottom of the 
object. The tidal conditions at the recording time of 
two satellite data on Pannikiang Island are required 
to determine whether sun glint and water column 
correction are necessary for this study. If the 
satellite passes over the study site during high tide 
conditions (all components of the benthic habitat are 
below the surface water), then correction for the 
effect of sun glint (Hedley et al., 2005; Anggoro et 
al., 2016) and water column (Lyzenga, 1981; 
Siregar, 2010) must be carried out. Otherwise, if 
there is a receding condition (all components of the 
benthic habitat appear on the water surface), no 
correction is necessary. Tide conditions use tide 
tables from the Geospatial Information Agency 
(BIG). 

Data analysis 

Classification Scheme 

The classification scheme was designed 
based on the dominant class of benthic habitats as 
a result of observations of the quadratic transect 
visually and transect photos (Siregar, 2010). Field 
observations showed that 7 components of benthic 
habitats could be identified, including 1) coral reef, 
2) seagrass, 3) rubble, 4) sand, 5) rubble + sand, 6) 
brown macroalgae, and 7) green macroalgae. In 
this study, the habitat component consisted of 
brown macroalgae (dominated by Sargassum spp. 
and Turbinaria spp.) and green macroalgae 
(dominated by Halimeda spp. and Caulerpa 
racemosa). 

Table 1. The sensor specifications for the Pleiades-1A (P-1A) and Sentinel-2A (S-2A) satellites. 

Band 
Wavelength (µm) 

Spatial Resolution 
(meters) 

Radiometric 
Resolution (bit) 

P-1A S-2A P-1A S-2A P-1A S-2A 

Blue 0,43-0,55 0,46-0,52 
 

2 
 

10 
 

12 
Green 0,50-0,62 0,54-0,58 
Red 0,59-0,71 0.65-0,68 
Near Infrared 4/8 0,74-0,94 0.76-0,90 0,5 
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Classification of Benthic and Macroalgae 
Habitats 

The benthic and macroalgal habitats were 
classified using a pixel-based classification method 
with the MLH and SVM classification algorithms. 
The MLH algorithm is a guided classification 
method considering the maximum probability of 
several pixel values, assuming the data is normally 
distributed. The MLH classification process begins 
by collecting the values of each class identifier and 
then calculating the class members from the training 
data set for each pixel in the satellite image (Bolstad 
& Lillesand, 1991). Meanwhile, the SVM algorithm 
is developed for kernel-based classification needs, 
where several objects are classified into one 
category or class. This method aims to find the 
maximum hyperplane (decision boundary) as a 
separator function between two classes in the input 
space (Supribadi et al., 2014). The classification 
process begins with creating a Region of Interest 
(RoI) for each habitat class as a reference for 
identifying satellite image pixels. 

Test Accuracy 

The accuracy test of the image classification 
results is carried out to determine the accuracy of 
the classification map by comparing the 
classification data with the actual data in the field (in 
situ). Accuracy is calculated using an error matrix 
(confusion matrix) with the equation to get the 
Overall Accuracy (OA), Producer Accuracy (PA), 
and User Accuracy (UA) values (Congalton & 
Green, 2008). The statistic (kappa) is used to 
assess the classification accuracy of an error 
matrix. The value of the kappa coefficient is in the 
range of 0 to 1 and is generally smaller than the 
overall accuracy value and can be calculated by 
Equation 1, Equation 2, Equation 3, Equation 4, 
and Equation 5 (Congalton & Green, 2008): 

% 𝑂𝐴 =
∑ 𝑛𝑖𝑖

𝑘
𝑖=1

𝑛
…………………………………….. (2) 

%𝑃𝐴 =
𝑛𝑗𝑗

𝑛+𝑗
………………...……………………….  (3) 

%𝑈𝐴 =
𝑛𝑖𝑖

𝑛𝑖+
…………………………....……………  (4) 

k =
n ∑ n𝑖𝑗

𝑘
𝑖=1   − ∑ n𝑖+n+j 

𝑘
𝑖=1

N2−∑ n𝑖+n+j 
𝑘
𝑖=1

…………….……………. (5) 

Where: 

k = the number of rows contained in the matrix 
n = the total number of observations 
njj = the number of observations in the j column and 
j row  
nii = the number of observations in the i column 
and i row  
nij = the number of observations in row i and 
column i 
ni+, n+j = the total margins of row i and column i 

Furthermore, if k1 and k2 are estimated kappa 
statistics from each error matrix, then var (k1) and 
var (k2) are estimates of the variance of the correct 
calculation results, the statistical test Equation 6 
for a single matrix is: 

Z =
k1

√Var (k1)
………………………………………... (6) 

Furthermore, the statistical tests applied to the two 
independent error matrices were significantly 
different as calculated by the following Equation 7: 

Z =
k1−k2

√Var(k1)+Var(k2)
………………………..……….. (7) 

Z is the standardized value and the normal 
distribution of kappa, while the values of k1 and k2 
are kappa calculations of each error matrix with the 
hypothesis H0:(k1-k2) = 0, alternative H1:(k1-k2) ≠ 0, 
H0 is rejected if Z ≥ Zα/2. If the results of the Z test 
calculation are greater than 1.96, then the results 
are significantly different (Congalton & Green, 
2008). 

Estimation of Macroalgae Biomass Stock and 
Na-alginate Potential  

All types of macroalgae contained in the 
transect frame were taken, washed thoroughly, and 
put into sample bags. The samples were then 
sorted; only brown macroalgae, Sargassum spp., 
and Turbinaria spp. were taken, weighed for their 
wet weight, and dried in the sun. After that, the 
samples were dried again in the laboratory using an 
oven at 70–80oC temperature to obtain a constant 
dry weight. The dry weight density of macroalgae 
(gr/m2) was then calculated. Furthermore, dry 
brown macroalgae were ready to be extracted for 
their Na-alginate content by referring to the method 
of Zaelanie et al. (2001). Several stages of 
extraction included soaking, crushing, acidification, 
and precipitation. The extracted product was dark 
brown flour. The product was then weighed to 
obtain the weight of Na-alginate from macroalgae. 
The potential of brown macroalgae can be 
calculated using the following Equation 8. 

S = A ∗ D……………………………...……………  (8) 

Where:  

S = standing stock of brown macroalgae (ton/ha) 
A = total area based of satellite data analysis (ha) 
D = density of each species (gr/m2) 

RESULTS AND DISCUSSION 

Distribution of Macroalgae Habitat 

The macroalgae habitats found during field 
observations were Sargassum spp., Turbinaria 
spp., Caulerpa racemosa, and Halimeda spp. 
Turbinaria were more commonly found in the south 
of the island, but almost all had aged. Meanwhile, 
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sargassum was found to thrive in the northern part 
of the island. Both types of macrolgae were found at 
a depth of 100 to 200 cm. On the other hand, 
Caulerpa racemosa and Halimeda spp. were found 
growing and spreading close to mangrove areas at 
a depth of 50 to 100 cm. Differences in conditions 
and distribution types of macroalgae were 
influenced by seasonal and enviromental factors 
(Dwimayasanti & Kurnianto, 2018). 

Pannikiang Islands Water Quality 

The water quality parameters measured 
included temperature, salinity, turbidity, and pH on 
the north, east, south, and west sides of Pannikiang 
Island. The sea temperature ranged from 30oC to 
32oC, where macroalgae were still tolerant to this 
temperature range. Salinity varied between 33 o/oo 
and 34 o/oo. The macroalgae habitat had tolerance 
for a low to high salinity range (Kadi, 2017). The 
value of turbidity in almost all measurement 
locations was 5 NTU. This value still follows the 
standard value of seawater quality based on the 
Ministry of Environment (2004), except in the 
southern part of the island, where the turbidity was 
5.83 NTU. The activity of fishermen and fishing 
boats on the island's south side was relatively high 
because it is close to the Garongkong Port, so the 
turbidity was higher than in other areas. The pH 
value ranges from 7.7 to 8.0, which was still in 
accordance with the pH quality standard for habitats 
in seawater of 7.7-8.5 (Kepmen LH, 2004). 

Tidal Conditions 

Figure 2 shows the tidal conditions on May 11, 
2020, and August 22, 2020, when the P-1A and S-

2A satellites passed at the study site between 09.00 
and 10.00 WITA. Figure 2 shows that when the P-
1A satellite passed, the water conditions at the 
study site were at shallow tide conditions (1-3 cm), 
while when the S-2A satellite passed, the water 
conditions were slightly higher (7-18 cm) but can be 
considered at low tide, so sun glint correction and 
water column correction were not applied. 

Maximum Likelihood Algorithm (MLH) 
Classification  

Figure 3 shows the results of the classification 
of benthic habitats as a result of image processing 
P1A and S-2A using the MLH algorithm. The 
macroalgae habitat appeared to be normally 
distributed in the reef flat area. This looks like the 
same as the study results (Wicaksono et al., 2019) 
on Kemujan Island. The results from the P-1A 
image clearly show that the distribution of brown 
macroalgae is more dominant than green 
macroalgae. In contrast to the S-2A image, green 
macroalgae have a more dominant distribution. The 
difference in acquisition time between the two 
images is the cause of the significant difference in 
information about the distribution of macroalgae. 
The season affected the presence of macroalgae; 
satellite P-1A acquired in May shows maximum 
growth for macroalgae habitat (predominantly 
brown macroalgae) at the study site. While in the 
west monsoon period, most of the macroalgae were 
cut off from the substrate due to being hit by waves 
(Wouthuyzen et al., 2015), elsewhere macroalgae 
experienced a period of aging as described from the 
results of S-2A satellite analysis. 

 

 
Figure 2.  The tidal height of Pannikiang Island on May 11, 2020, and August 22, 2020, when the P-1A satellite and S-

2A satellite scanned the study location. 
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Figure 3.  Map of benthic habitats processed on satellite imagery P-1A (A) and S-2A (B) using the MLH classification 

algorithm. 

 
Figure 4.  Map of benthic and macroalgal habitats processed on satellite images P-1A (A) and S-2A (B) using the SVM 

algorithm. 

 
Support Vector Machine (SVM) Algorithm 
Classification  

Figure 4 shows the results of the classification 
of benthic habitats from image processing P-1A and 
S-2A using the SVM algorithm. Similar to MLH 
(Figure 3), the P-1A and S-2A images produced a 
benthic map with a more dominant distribution of 
brown macroalgae. Several other high-density 
benthic habitat components were mapped, namely 
seagrass, Halimeda spp., and Sargassum spp. On 
the other hand, there are also unclassified pixels 
using the MLH and SVM algorithms. This is 
commonly found in any mapping of benthic habitats, 
such as seagrass (Hafizt & Danoedoro, 2017). In 
the classification process, mixed pixels often occur. 
In the classification process, mixed pixels often 
occur. In this case, many coral or rubble classes 
were included in the brown macroalgae habitat 
class. Therefore, this type of macroalgae was more 
dominant than green macroalgae, as found by 

Siregar et al. (2020), where benthic habitats were 
mapped using two different satellites, WorldView-2 
(WV-2) and SPOT 6 on Sebaru Besar Island. WV-2 
detected the distribution of rubble in the southern 
part of the island, while SPOT 6 detected 
macroalgae habitat in that area. 

Test Accuracy 

The results of the accuracy test on all 
components of the benthic habitat using P-1A and 
S-2A satellite images by applying the respective 
MLH and SVM classification algorithms are 
presented in Table 2. The P-1A imagery with the 
MLH classification algorithm shows that almost all 
benthic habitats are mapped with both with an 
accuracy range of 50%-100%, except for green 
macroalgae, with the lowest PA value (36.7%) and 
coral reefs (46.7%). The SVM classification 
algorithm showed that all benthic habitats can be 
mapped accurately except for coral reefs with the 
lowest PA value (36.7%). The S-2A image shows 

A B 

A B 
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different things. The accuracy per class is 
categorized as good by applying the MLH 
classification algorithm, except for the seagrass 
class, where the PA value is low (35%). Applying 
the SVM classification algorithm has the lowest PA 
value for rubble (31.3%) and rubble mixed with sand 
(43.8%). The accuracy value for green and brown 
macroalgae ranges from 50%–100%, meaning that 
both types of macroalgae have been mapped well 
according to actual conditions in the field, except for 
the green macroalgae class in the P-1A image with 
the application of the MLH algorithm. Some 
accurate samples are in the rubble class and 
seagrass with a PA of 50%. 

The overall accuracy of the P-1A satellite data 
using the MLH and SVM classification algorithms is 
slightly higher at 70.4% and 71.9%, respectively, 
while the accuracy of the S-2A satellite data is 
68.6% and 67.6%. Wicaksono (2016) applied the 
MLH classification algorithm for high-resolution 
WorldView-2 images after sun glint correction and 
obtained the highest accuracy of 52.8% in mapping 
macroalgal habitat at the pigment level in the 
Karimunjawa Islands. Without correcting, 
Wouthuyzen et al. (2016) also mapped 6 benthic 
habitat classes on coral reef flats at Bitung-Bentena 
Beach with the iso-cluster classification method. 
They successfully mapped rock-macroalgae 
habitats. Chocolate was dominated by Turbinaria 
spp species, and brown seagrass-macroalgae was 
dominated by Sargassum sp, Hormophysa sp, and 
Padina spp, with an accuracy of 73.6%. Setyawidati 
et al. (2018) mapped five benthic habitats that are 
brown macroalgae substrates on Libukang Island, 
South Sulawesi using high-resolution satellite 
imagery GeoEye-1 with an accuracy of 74.2%. The 
MLH classification algorithm for both P-1A and S-2A 
satellite sensors still gave moderate mapping 
accuracy results because the distribution of 
samples used as training samples for classification 
processing and accuracy calculations did not 

represent all study areas or the sampling 
distribution is uneven (Hafizt & Danoedoro, 2016). 
In addition, the MLH classification can provide high 
accuracy if the spectral reflection of the benthic 
habitat has a Gaussian distribution (Wicaksono et 
al., 2019). 

The accuracy obtained in this study was > 
60%. The accuracy of 60% is a threshold value that 
is still acceptable in mapping benthic macroalgae 
habitats (Green et al., 2000).  Meanwhile, based on 
the Indonesian national mapping quality standard 
from the Geospatial Information Agency (2014), it is 
stated that the accuracy of benthic habitat maps 
must be 60% with four benthic classes at a scale of 
1:50.000. Based on these two references, the 
results of mapping benthic and macroalgal habitats 
using the MLH and SVM classification algorithms on 
P-1A and S-2A satellite data provide adequate 
results. The overall accuracy of the P-1A satellite is 
higher than that of the S-2A due to its higher spatial 
resolution (2 meters) than the S-2A image (10 m). 
Other factors causing the low accuracy (75%) of the 
MLH and SVM classification algorithms on P-1A 
include S-2A, in addition to the uneven sampling 
distribution as previously mentioned, and the 
presence of a mixture of several habitat classes with 
other classes, such as brown macroalgal habitat 
with rubble, where the roots of brown macroalgae 
species, especially Turbinaria spp. species are 
commonly found firmly attached to the rubble 
substrate, such as those found in the southern part 
of Pannikiang Island. Another cause is the 
preparation of a classification scheme (Siregar et 
al., 2018), which is not well structured, as well as 
the influence of turbidity (Siregar et al., 2013),  
especially in the south of the island, with high 
turbidity values (NTU>5) compared to the northern 
part (NTU<5). Furthermore, kernel-based SVM 
algorithms have limitations in finding hyperplanes 
between two habitats with relatively similar spectral 
reflections (Mastu, 2018).  

 
Table 2.  The results of the accuracy test for the classification of benthic and macroalgal habitats using the MLH and 

SVM algorithms on P-1A and S-2A images. 

Satellite Image/  
Benthic Habitat 

MLH SVM 

PA UA OA PA UA OA 

P-1A 
Coral Reefs 46.7%  82.4% 

70.4% 

36.7% 61.1% 

71.9% 

Rubble 86.7% 56.5% 65.5% 100% 
Sand 100% 100% 95% 100% 
Rubble Mixed With Sand 100% 75% 100% 83.3% 
Seagrass 54.3% 61.3% 82.9% 48.3% 
Brown Macroalgae  90% 66.7% 67.5% 79.4% 
Green Macroalgae 36.7% 91.7% 76.7% 74.2% 

S-2A 
Coral Reefs 80.6% 78.1% 

68.6% 

74.2% 95.8% 

67.6% 

Rubble 59.4% 54.3% 31.3% 83.3% 
Sand 100% 84.6% 100% 73.3% 
Rubble Mixed With Sand 50% 50% 43.8% 70% 
Seagrass 35% 73.7% 90% 48.7% 
Brown Macroalgae 87.8% 65.5% 68.3% 65.1% 
Green Macroalgae 72% 75% 56% 100% 
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Table 3. Compares the Kappa value, Z statistic, and significance test of the MLH and SVM algorithms. 

Satellite 
Image 

Algorithms Kappa 
Kappa Coefficient 

(Richards, 2013) 
Z 

Sig. MLH vs 
SVM 

P-1A 
MLH 0.65 <0.4 (low) 12.73 

-0.25 
SVM 0.67 0.41 – 0.60 (moderate) 13.97 

S-2A 
MLH 0.63 0.61 – 0.75 (good) 11.93 

0.21 
SVM 0.61 0.76 – 0.80 (very good) 10.80 

 

The Kappa value analysis, Z statistic, and 
significance test were used to assess the 
performance of the two MLH vs SVM classification 
algorithms (Table 3). This table shows that the 
results are not statistically significant between the 
MLH and SVM classification algorithms for both 
satellite images, with a value range of 0.61-0.67. 
Referring to the kappa coefficient, Richards (2013) 
states that the range of values can be categorized 
as a good classification result (0.61-0.75) (Table 3). 
The kappa value indicated a reduction in 
misclassification with a range of 0 to 1 (Congalton & 
Green, 2008). A kappa value of 0.67 means the 
algorithm can avoid 67% of errors in the random 
classification process. The statistical Z value shows 
that using the SVM algorithm on the P-1A image is 
better than other treatments, with the highest 
statistical Z value of 13.97. In addition, the 
significance test results of two different matrices 
between the MLH and SVM algorithms obtained a 
value of -0.25 vs 0.21. According to Congalton & 
Green (2008), the value of Z is said to be 
significantly different if the value is outside the value 
range of 1.96–1.96. So, these results indicated that 
the two error matrices were not significantly 
different. 

Distribution and potential of macroalgae 
habitat 

The results of the calculation of the habitat 
area of brown macroalgae using the MLH 
classification algorithm in the P-1A image are wider 
(128.5 ha) than green macroalgae (51.8 ha). The 
area obtained from the S-2A image shows a slightly 
wider green macroalgae (84.1 ha) compared to 

brown macroalgae (76.8 ha) (Figure 5). Meanwhile, 
the SVM algorithm showed that brown macroalgae 
were more dominant than green macroalgae in P-
1A satellite imagery (88.1 and 59.8 ha) and S-2A 
satellite imagery (66.7 and 48.1 ha). The difference 
in acquisition time between the two satellites causes 
obtaining different areas of macroalgal habitat. The 
P-1A image acquired in May coincided with the 
maximum growth month for brown macroalgae 
(Sargassum spp.) in August, when macroalgae 
growth decreased (Setywidati, 2018a). The results 
of this study described the distribution and extent, 
especially of brown macroalgae, which represent 
the growing season of brown macroalgae in 
Pannikiang Island.  

Brown macroalgae habitat potential was 
calculated using benthic habitat maps, with an 
accuracy of 60% (BIG, 2014; Green et al., 2000). 
The benthic habitat map is classified by the SVM 
and MLH algorithms analyzed from satellites P-1A 
(71.9% accuracy) and S-2A (68.6% accuracy). 
Furthermore, this study exclusively aims at the 
potential of alginate produced from brown 
macroalgae, so green macroalgae are no longer 
discussed. Table 4 shows the potential of brown 
macroalgae at the study site. From 9 sampling 
stations, the average wet weight was 3498 gr/m2 for 
Sargassum and 1839 gr/m2 for Turbinaria. The 
conversion of the average biomass of wet 
macroalgae to dry weight after drying in the sun and 
then drying in an oven at 70 oC until the weight 
becomes constant, the ratio of wet weight to dry 
weight of Sargassum was 1000: 159 gr, while 
Turbinaria spp was 1000: 190 gr (Table 4). These 
results indicated that the water content of 
Sargassum was higher than that of Turbinaria.

. 

  
Figure 5.  Habitat area of brown macroalgae and green macroalgae from P-1A and S-2A images using MLH and 

SVM classification algorithms. 
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Results of the study (Wouthuyzen et al., 2016) 
the Bitung-Bentena coast showed that the ratio of 
wet weight to dry weight of brown macroalgae 
(Sargassum, Turbinaria, Padina) was 1000 g to 140 
g or lower than in this study. Based on the laboratory 
analysis results, brown macroalgae's dry density 
was 112.2 gr/m2 for Sargassum and 87.4 gr/m2 for 
Turbinaria. Meanwhile, the habitat area of two 
macroalgae was based on the analysis of satellite 
P-1A (88.1 ha) and S-2A (76.8 ha); this area will be 
the basis for calculating the potential for 
macroalgae. The potential for dry macroalgae 
Sargassum and Turbinaria from image analysis P-
1A were 98.0 and 77.0 tons for a total of 175 tons. 
The results of image analysis S-2A were 85.4 and 
67.1 tons for 152.5 tons. The results of the 
extraction of dry brown macroalgae into Na-alginate 
carried out in the laboratory showed that one (1) 
gram of dry brown macroalgae (Turbinaria) yielded 
0.779 and 0.544 gr of Na-alginate, respectively, with 
an average value of 0.662 gr (66.2% yield). The dry 
brown macroalga Sargassum yielded 0.827 and 
0.862 gr of Na-alginate, respectively, with an 
average value of 0.845 (84.5% yield). Based on the 
respective yield values of Sargassum and 
Turbinaria, the estimated stock of Na-alginate for 
each satellite data was 133.8 tons (P-1A) and 116.6 
tons (S-2A) on Pannikiang Island. The average yield 
of brown macroalgae in Pannikiang Island (73.4%) 
was very high compared to the yield of various 

brown macroalgae from different Indonesian waters 
(Table 5), which was only around 10.9–42.2% with 
an average value of 21.9%, meaning that the Na-
alginate produced from Pannikiang Island was the 
highest. 

In Pari Island, located in Seribu Islands, the 
growth season with high density for brown 
macroalgae (Hormophysa sp, Sargassum spp, and 
Turbinaria spp) was in September (7.05 gr/m2) 
rather than in June (4.02 gr/m2). In the western 
season (December-February), brown macroalgae 
break off from the substrate (rubble) due to strong 
waves and later will re-grow in the following season 
(Wouthuyzen et al., 2015).  Furthermore, several 
studies yielded different potentials of brown 
macroalgae, such as those carried out by 
Wouthuyzen et al. (2016), whose estimated alginate 
stock was 29.9 tons on the Bitung-Bentena Coast. 
Setyawidati et al. (2018b) study showed an 
abundance of Sargassum and Padina in May-Juni 
with a potential biomass of 1189.9 and 166.7 gr/m2, 
respectively. While the abundance of Turbinaria in 
November estimated a biomass of 3245 gr/m2 on 
Libukang Island (South Sulawesi). Another study by 
Setyawidati et al. (2018a) in Ekas Bay (Lombok 
Island) estimated the dry weight potential of 
Sargassum and Turbinaria in May-June (669.7 
tons) and November (147.7 tons) with Na-alginate 
potential of 207.6 tons.  

 
 
Table 4. The estimated dry macroalgae potential of Sargassum spp. and Turbinaria spp. species based on sampling 

density in the field and the area of satellites P-1A (May 2020) and S-2A (August 2020). 

Parameter Sargassum spp Turbinaria spp 

Number of transects = 9 5 4 
Frame transects 1 m2 1 m2 
Total wet weight (gr) 3498 1839 
Wet weight density (gr/m2) 699.6 459.8 
The ratio of wet: dry weight 1000:159 1000:190 
Dry weight density (gr/m2) 111.2 87.4 
Average yield (%) 84.5 66.2 
Brown macroalgae area (ha); 
P-1A SVM 
S-2A MLH 

 
88.1 
76.8 

Dry weight stock potential (tons) 
P-1A (Mei 2020) 
S-2A (Agustus 2020) 

 
98.0 
85.4 

 
77.0 
67.1 

Total potency of Na-alginate 
May 2020 (P-1A) 
August 2020 (S-2A) 

 
133.8 
116.6 

Table 5. The Na-alginate yield from various types of brown macroalgae extracted from various Indonesian waters using 
various methods. 

No 
Types of brown 

macroagae 
Macroalgae 
samples (gr) 

Natrium-
alginate (gr) 

Yield 
(%) 

Library resources 

1 Sargassum sp 25 10.6 42.4 
(Prasetyaningrum & Purbasari, 
2002) 

2 Sargassum sp 450 177.3 39.4 (Subagan et al., 2020) 
3 Sargassum sp 90 20.2 22.4 (Sunar, 2015) 
4 S. fuitans 100 11.7 11.7 (Maharani et al., 2017) 
5 S. muticum. 100 14.8 14.8 (Nurkhanifah & Husni, 2020) 

6 Sargassum sp 
1000 108.6 10.9 

(Suryani & Rohaeti, 2008) 
500 68.8 13.8 

7 Sargassum sp 40 5.2 12.9 (Jayanudin et al., 2014) 
8 Sargassum sp 50 8.7 17.4 (Putriyana et al., 2018) 
9 S. cristaefolium 50 16.1 32.3 (Tambunan et al., 2013) 
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No 
Types of brown 

macroagae 
Macroalgae 
samples (gr) 

Natrium-
alginate (gr) 

Yield 
(%) 

Library resources 

10 Sargassum sp 2000 219.0 11.0 (Setyoaji et al., 2019) 
11 Sargassum sp 25 7.9 31.6 (Wardani et al., 2009) 
12 S. polycystum 25 4.9 19.5 (Dharmayanti et al., 2021) 

13 
Sargassum sp 10 2.8 28.1 

(Nastiti, 2016) Turbinaria Sp 10 2.2 22.2 
Padina sp 10 1.6 16.2 

14 Padina Sp 50 13.4 26.8 (Pasaribu et al., 2020) 
15 Padina Sp 50 8.9 17.8 (Septiani et al., 2017) 
16 Padina sp 1000 250.0 25.0 (Hamrun et al., 2018) 
17 Turbinaria ornata 150 33.7 22.5 (Laksanawati et al., 2017) 
18 Turbinaria sp 50 14.0 28.0 (Wibowo et al., 2013) 
19 Turbinaria sp 30 7.1 23.8  

20 
T. triquetra 100 22.2 22.2 

(Rashedy et al., 2021) Hormophysa 
cuneiformis 

100 13.3 13.3 

Average yield Sargassum spp 22.0 

 
Average yield Padina sp 21.5 
Average yield Turbinaria sp 24.1 
Average yield of all macroalgae 21.9 

 
This study found that brown macroalgae in 

several locations (Pannikiang Island, Libukang 

Island, Bitung-Bentena, Ekas Bay, and Pari Island) 

have a high potential to be extracted into Na-

alginate. Therefore, there is no doubt that all coastal 

areas of Indonesia can also produce high alginate, 

which can reduce national imports of alginate. 

Alginate is urgently needed by various industries, 

such us: non-food, food, pharmaceutical, cosmetic, 

and medical industries, which various countries 

have supplied. 

CONCLUSION 

This study successfully mapped benthic and 
macroalgal habitats with an overall accuracy 
of>60%. This accuracy complies with BIG 
standards in shallow water habitat mapping, 
classifying habitat classes. The performance of the 
SVM classification algorithm was better than the 
MLH classification algorithm based on the 
calculation of accuracy and kappa value. 
Differences in acquisition time and pixel size affect 
the results of classification and accuracy tests. This 
method can estimate the potential of brown 
macroalgae and Na-alginate stocks on Pannikiang 
Island. This is because the yield of brown 
macroalgae was higher than brown macroalgae in 
other parts of Indonesia that used various extraction 
methods. 

The combination of accurate mapping and 
macroalgae biomass obtained from the field was 
effective and efficient for predicting, monitoring, and 
managing the potential of brown macroalgae and 
the Na-alginate they contain. However, this method 
still needs to be developed and tested in other 
coastal areas of Indonesia. This is because each 
water area has different characteristics. Therefore, 
it can eventually be used as a standard benthic 
habitat mapping method. 
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